Suppr超能文献

简化的爱丁堡 CT 标准用于识别与脑淀粉样血管病相关的脑叶颅内出血。

Simplified Edinburgh CT Criteria for Identification of Lobar Intracerebral Hemorrhage Associated With Cerebral Amyloid Angiopathy.

机构信息

From the Departments of Neurology (J.A.S., S.S.R., M.H., M.I.S., A.M., M.B., V.R., K.M., J.B.K.) and Neuroradiology (M.K., P.H., T.E.), University of Erlangen-Nuremberg, Schwabachanlage, Erlangen, Germany; and Department of Neurology (M.X.), Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, China.

出版信息

Neurology. 2022 May 17;98(20):e1997-e2004. doi: 10.1212/WNL.0000000000200261. Epub 2022 Mar 21.

Abstract

BACKGROUND AND OBJECTIVES

In patients with lobar intracerebral hemorrhage (ICH), etiologic characterization represents a tradeoff between feasibility, resource allocation, and diagnostic certainty. This study investigated the accuracy and clinical utility of the simplified Edinburgh CT criteria to identify underlying cerebral amyloid angiopathy (CAA).

METHODS

This external validation analyzed 210 consecutive patients with lobar ICH and available CT and MRI studies from a prospective single-center observational cohort study (2006-2015, Longitudinal Cohort Study on ICH Care [UKER-ICH,] NCT03183167). We investigated the interrater variability and diagnostic accuracy of the simplified Edinburgh CT-based criteria for identification of ICH associated with probable CAA according to MRI-based modified Boston criteria as a reference standard. We evaluated the utility of the simplified Edinburgh criteria by decision curve analysis, comparing the theoretical clinical net benefit (weighted benefit-harm at varying threshold probabilities) of the high-risk category (finger-like projections and subarachnoid hemorrhage) for ruling in and the low-risk category (neither finger-like projections nor subarachnoid hemorrhage) for ruling out with the assumptions of no or all patients having CAA (default strategies).

RESULTS

Of 210 patients, 70 (33.3%) had high risk, 67 (31.9%) had medium risk, and 73 (34.8%) had low risk for CAA-associated ICH according to simplified Edinburgh CT criteria, showing moderate interrater variability. Discrimination was good (area under the receiver operating characteristics curve 0.74, 95% CI 0.67-0.81) without evidence of poor calibration (Hosmer-Lemeshow, = 0.54) for validation of MRI-based diagnosis of probable CAA (n = 94 of 210, 44.8%). The rule-in criteria (high risk), had 87.1% (79.3%-92.3%) specificity, and the rule-out criteria (low risk), had 80.9% (71.1%-88.0%) sensitivity. Decision curve analysis suggested a theoretical clinical net benefit for ruling in but not for ruling out probable CAA compared to default strategies.

DISCUSSION

Applying the simplified Edinburgh CT criteria during diagnostic workup seems clinically useful and may accurately identify CAA in patients with lobar ICH.

TRIAL REGISTRATION INFORMATION

ClinicalTrials.gov Identifier: NCT03183167.

CLASSIFICATION OF EVIDENCE

This study provides Class II evidence that in patients with lobar hemorrhages, the simplified Edinburgh criteria accurately identify those at high risk of CAA.

摘要

背景与目的

在脑叶颅内出血(ICH)患者中,病因特征的确定需要在可行性、资源分配和诊断确定性之间进行权衡。本研究旨在探讨简化爱丁堡 CT 标准对明确潜在脑淀粉样血管病(CAA)的准确性和临床实用性。

方法

本项外部验证分析了来自前瞻性单中心观察队列研究(2006-2015 年,纵向队列研究脑出血护理[UKER-ICH],NCT03183167)的 210 例连续脑叶 ICH 患者的 CT 和 MRI 资料。我们研究了简化基于 CT 的爱丁堡标准对基于 MRI 的改良波士顿标准作为参考标准确定的可能与 CAA 相关的 ICH 的观察者间变异性和诊断准确性。我们通过决策曲线分析评估了简化爱丁堡标准的实用性,该分析比较了高风险(指状突起和蛛网膜下腔出血)类别和低风险(无指状突起且无蛛网膜下腔出血)类别对存在或不存在 CAA 的所有患者的理论临床净获益(在不同阈值概率下加权获益-危害),默认策略为高风险类别用于确诊,低风险类别用于排除。

结果

根据简化爱丁堡 CT 标准,210 例患者中,70 例(33.3%)为 CAA 相关 ICH 的高风险,67 例(31.9%)为中风险,73 例(34.8%)为低风险,显示出中度观察者间变异性。鉴别力良好(受试者工作特征曲线下面积 0.74,95%置信区间 0.67-0.81),且未发现校准不良(Hosmer-Lemeshow, = 0.54),用于验证基于 MRI 的可能 CAA 诊断(n=210 例中的 94 例,44.8%)。规则纳入标准(高风险)的特异性为 87.1%(79.3%-92.3%),规则排除标准(低风险)的敏感性为 80.9%(71.1%-88.0%)。决策曲线分析表明,与默认策略相比,用于确诊 CAA 的规则纳入标准可能具有理论上的临床净获益,但用于排除 CAA 则无获益。

讨论

在诊断过程中应用简化爱丁堡 CT 标准似乎具有临床实用性,可准确识别脑叶 ICH 患者的 CAA。

证据分类

本研究提供了 II 级证据,表明在脑叶出血患者中,简化爱丁堡标准可以准确识别出 CAA 风险较高的患者。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验