Center for Drug Research, Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany.
German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany.
Nat Protoc. 2022 May;17(5):1189-1222. doi: 10.1038/s41596-021-00678-z. Epub 2022 Mar 21.
The mouse is a common and cost-effective animal model for basic research, and the number of genetically engineered mouse models with cardiac phenotype is increasing. In vivo electrophysiological study in mice is similar to that performed in humans. It is indispensable for acquiring intracardiac electrocardiogram recordings and determining baseline cardiac cycle intervals. Furthermore, the use of programmed electrical stimulation enables determination of parameters such as sinoatrial conduction time, sinus node recovery time, atrioventricular-nodal conduction properties, Wenckebach periodicity, refractory periods and arrhythmia vulnerability. This protocol describes specific procedures for determining these parameters that were adapted from analogous human protocols for use in mice. We include details of ex vivo electrophysiological study, which provides detailed insights into intrinsic cardiac electrophysiology without external influences from humoral and neural factors. In addition, we describe a heart preparation with intact innervation by the vagus nerve that can be used as an ex vivo model for vagal control of the cardiac conduction system. Data acquisition for in vivo and ex vivo electrophysiological study takes ~1 h per mouse, depending on the number of stimulation protocols applied during the procedure. The technique yields highly reliable results and can be used for phenotyping of cardiac disease models, elucidating disease mechanisms and confirming functional improvements in gene therapy approaches as well as for drug and toxicity testing.
小鼠是基础研究中常用且经济有效的动物模型,具有心脏表型的基因工程小鼠模型的数量正在增加。在体电生理研究在小鼠中的应用与人相似。它对于获取心内心电图记录和确定基本心脏周期间隔是不可或缺的。此外,程控电刺激的使用可以确定窦性传导时间、窦房结恢复时间、房室结传导特性、文氏周期、不应期和心律失常易感性等参数。本方案描述了从类似的人类方案中改编而来的用于小鼠的特定参数确定程序。我们包括了离体电生理研究的详细信息,该研究提供了对内在心脏电生理的详细了解,而不受体液和神经因素的外部影响。此外,我们描述了一种具有完整迷走神经支配的心脏准备,可作为迷走神经对心脏传导系统控制的离体模型。体内和离体电生理研究的数据采集每个小鼠需要 1 小时左右,具体取决于过程中应用的刺激方案数量。该技术可产生高度可靠的结果,可用于心脏疾病模型的表型分析、阐明疾病机制以及确认基因治疗方法的功能改善,以及用于药物和毒性测试。