Suppr超能文献

通过多组学分析揭示候选 miRNA 调控剂在砷诱导的胰腺β细胞损伤中的作用。

Candidate master microRNA regulator of arsenic-induced pancreatic beta cell impairment revealed by multi-omics analysis.

机构信息

Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.

Department of Nutrition, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

出版信息

Arch Toxicol. 2022 Jun;96(6):1685-1699. doi: 10.1007/s00204-022-03263-9. Epub 2022 Mar 21.

Abstract

Arsenic is a pervasive environmental toxin that is listed as the top priority for investigation by the Agency for Toxic Substance and Disease Registry. While chronic exposure to arsenic is associated with type 2 diabetes (T2D), the underlying mechanisms are largely unknown. We have recently demonstrated that arsenic treatment of INS-1 832/13 pancreatic beta cells impairs glucose-stimulated insulin secretion (GSIS), a T2D hallmark. We have also shown that arsenic alters the microRNA profile of beta cells. MicroRNAs have a well-established post-transcriptional regulatory role in both normal beta cell function and T2D pathogenesis. We hypothesized that there are microRNA master regulators that shape beta cell gene expression in pathways pertinent to GSIS after exposure to arsenicals. To test this hypothesis, we first treated INS-1 832/13 beta cells with either inorganic arsenic (iAs) or monomethylarsenite (MAs) and confirmed GSIS impairment. We then performed multi-omic analysis using chromatin run-on sequencing, RNA-sequencing, and small RNA-sequencing to define profiles of transcription, gene expression, and microRNAs, respectively. Integrating across these data sets, we first showed that genes downregulated by iAs treatment are enriched in insulin secretion and T2D pathways, whereas genes downregulated by MAs treatment are enriched in cell cycle and critical beta cell maintenance factors. We also defined the genes that are subject primarily to post-transcriptional control in response to arsenicals and demonstrated that miR-29a is the top candidate master regulator of these genes. Our results highlight the importance of microRNAs in arsenical-induced beta cell dysfunction and reveal both shared and unique mechanisms between iAs and MAs.

摘要

砷是一种普遍存在的环境毒素,被列为美国毒物和疾病登记署(Agency for Toxic Substance and Disease Registry)首要调查对象。虽然慢性砷暴露与 2 型糖尿病(type 2 diabetes,T2D)有关,但其中的机制在很大程度上尚不清楚。我们最近证明,砷处理 INS-1 832/13 胰腺β细胞会损害葡萄糖刺激的胰岛素分泌(glucose-stimulated insulin secretion,GSIS),这是 T2D 的一个标志。我们还表明,砷会改变β细胞的 microRNA 谱。microRNAs 在正常β细胞功能和 T2D 发病机制中具有明确的转录后调控作用。我们假设,在暴露于砷化物后,有 microRNA 主调控因子会影响与 GSIS 相关的β细胞基因表达途径。为了验证这一假设,我们首先用无机砷(inorganic arsenic,iAs)或一甲基砷酸盐(monomethylarsenite,MAs)处理 INS-1 832/13β细胞,并证实 GSIS 受损。然后,我们使用染色质运行测序、RNA 测序和小 RNA 测序分别进行多组学分析,以分别定义转录、基因表达和 microRNAs 的图谱。综合这些数据集,我们首先表明,iAs 处理下调的基因富集在胰岛素分泌和 T2D 途径中,而 MAs 处理下调的基因富集在细胞周期和关键的β细胞维持因子中。我们还定义了主要受砷剂诱导的转录后调控的基因,并证明 miR-29a 是这些基因的主要候选主调控因子。我们的结果强调了 microRNAs 在砷诱导的β细胞功能障碍中的重要性,并揭示了 iAs 和 MAs 之间存在共享和独特的机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d3d/9095563/709dc82a9546/204_2022_3263_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验