Suppr超能文献

无监督贝叶斯伊辛近似在解码神经活动和其他生物词典中的应用。

Unsupervised Bayesian Ising Approximation for decoding neural activity and other biological dictionaries.

机构信息

Department of Medical Physics, Centro Atómico Bariloche and Instituto Balseiro, Bariloche, Argentina.

Department of Physics, Emory University, Atlanta, United States.

出版信息

Elife. 2022 Mar 22;11:e68192. doi: 10.7554/eLife.68192.

Abstract

The problem of deciphering how low-level patterns (action potentials in the brain, amino acids in a protein, etc.) drive high-level biological features (sensorimotor behavior, enzymatic function) represents the central challenge of quantitative biology. The lack of general methods for doing so from the size of datasets that can be collected experimentally severely limits our understanding of the biological world. For example, in neuroscience, some sensory and motor codes have been shown to consist of precisely timed multi-spike patterns. However, the combinatorial complexity of such pattern codes have precluded development of methods for their comprehensive analysis. Thus, just as it is hard to predict a protein's function based on its sequence, we still do not understand how to accurately predict an organism's behavior based on neural activity. Here, we introduce the unsupervised Bayesian Ising Approximation (uBIA) for solving this class of problems. We demonstrate its utility in an application to neural data, detecting precisely timed spike patterns that code for specific motor behaviors in a songbird vocal system. In data recorded during singing from neurons in a vocal control region, our method detects such codewords with an arbitrary number of spikes, does so from small data sets, and accounts for dependencies in occurrences of codewords. Detecting such comprehensive motor control dictionaries can improve our understanding of skilled motor control and the neural bases of sensorimotor learning in animals. To further illustrate the utility of uBIA, we used it to identify the distinct sets of activity patterns that encode vocal motor exploration versus typical song production. Crucially, our method can be used not only for analysis of neural systems, but also for understanding the structure of correlations in other biological and nonbiological datasets.

摘要

破译低层次模式(大脑中的动作电位、蛋白质中的氨基酸等)如何驱动高层次生物特征(感觉运动行为、酶功能)的问题代表了定量生物学的核心挑战。由于缺乏从可以从实验中收集的数据集大小进行此类推断的一般方法,因此严重限制了我们对生物世界的理解。例如,在神经科学中,已经表明一些感觉和运动代码由精确定时的多尖峰模式组成。然而,这种模式代码的组合复杂性使得开发用于全面分析它们的方法变得不可能。因此,就像根据序列预测蛋白质的功能很困难一样,我们仍然不了解如何根据神经活动准确预测生物体的行为。在这里,我们引入了用于解决此类问题的无监督贝叶斯伊辛近似(uBIA)。我们在神经数据的应用中证明了它的实用性,检测到精确计时的尖峰模式,这些模式在鸣禽发声系统中编码特定的运动行为。在控制区域的神经元在唱歌过程中记录的数据中,我们的方法使用任意数量的尖峰检测到这样的码字,从小数据集进行检测,并考虑了码字出现的依赖性。检测到这样的综合运动控制字典可以提高我们对熟练运动控制的理解,以及动物中感觉运动学习的神经基础。为了进一步说明 uBIA 的实用性,我们使用它来识别编码发声运动探索与典型歌曲产生的不同活动模式集。至关重要的是,我们的方法不仅可用于神经系统的分析,还可用于理解其他生物和非生物数据集相关性的结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e33/8989415/c37b0ee33d44/elife-68192-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验