Suppr超能文献

基于多体神经网络的基于结构的粗粒化水的力场。

Many-Body Neural Network-Based Force Field for Structure-Based Coarse-Graining of Water.

机构信息

Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.

Oden Institute for Computational Engineering and Sciences, Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States.

出版信息

J Phys Chem A. 2022 Mar 31;126(12):2031-2041. doi: 10.1021/acs.jpca.1c09786. Epub 2022 Mar 22.

Abstract

High-fidelity results from atomistic simulations can only be obtained by using accurate force-field (FF) parameters. Although empirical FFs are commonly used in the modeling of atomistic systems due to their simplicity, they have many limitations inherent in the crude approximations associated with their analytical form. Recent advances in neural network-based FFs have led to more accurate FFs by using symmetry functions or full many-body expansions. However, this approach leads to several issues including the arbitrariness of the symmetry functions, and the intangible and uninterpretable interactions which are only known once the positions of all atoms are set. More importantly, training is another bottleneck, as high-quality force and energy information is required, which is usually not accessible from experimental data. To solve these issues within the context of structure-based coarse-graining methods, we switch in this work to a local-search method to target the reference structure instead of using conventional backpropagation algorithms used to target the forces and energies of the reference structure. Our FF is decomposed into two-, three-, and higher-order terms, where each term is modeled with a separate neural network. To show the versatility of our method, we study four different systems, namely, Stillinger-Weber particles as an atomistic case and three water models, namely SPC/E, MB-pol, and , as coarse-graining cases. We show the successful application of our approach, by reproducing structural properties of different water models, followed by providing insight into the role of two-and three-body interactions. The results of all models indicate that the double-well isotropic pair potential, the signature of water-like behavior in an isotropic system, vanishes upon inclusion of the three-body interaction, showing dominance of the three-body interaction over the two-body interaction in water-like behavior with the single-well isotropic pair potential.

摘要

原子模拟的高保真结果只能通过使用准确的力场 (FF) 参数获得。虽然经验性 FF 由于其简单性而常用于原子系统的建模,但它们在其分析形式中存在许多固有的局限性。基于神经网络的 FF 的最新进展通过使用对称函数或全多体展开实现了更准确的 FF。然而,这种方法导致了几个问题,包括对称函数的任意性,以及只有在设置了所有原子的位置后才知道的无形和不可解释的相互作用。更重要的是,训练是另一个瓶颈,因为需要高质量的力和能量信息,而这些信息通常无法从实验数据中获得。为了解决基于结构的粗粒化方法中的这些问题,我们在这项工作中切换到局部搜索方法来针对参考结构,而不是使用传统的反向传播算法来针对参考结构的力和能量。我们的 FF 分解为二、三和更高阶项,其中每个项都使用单独的神经网络进行建模。为了展示我们方法的多功能性,我们研究了四个不同的系统,即作为原子系统的 Stillinger-Weber 粒子和三个水模型,即 SPC/E、MB-pol 和 ,作为粗粒化系统。我们通过再现不同水模型的结构特性来展示我们方法的成功应用,然后提供对二体和三体相互作用作用的深入了解。所有模型的结果表明,双阱各向同性偶极子势,各向同性系统中类似水的行为的特征,在包括三体相互作用后消失,表明三体相互作用在具有单阱各向同性偶极子势的类似水行为中对二体相互作用的主导地位。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验