Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, 64287Darmstadt, Germany.
J Chem Theory Comput. 2023 Feb 28;19(4):1099-1110. doi: 10.1021/acs.jctc.2c00871. Epub 2023 Feb 6.
Molecular dynamics (MD) simulations based on coarse-grained (CG) particle models of molecular liquids generally predict accelerated dynamics and misrepresent the time scales for molecular vibrations and diffusive motions. The parametrization of Generalized Langevin Equation (GLE) thermostats based on the microscopic dynamics of the fine-grained model provides a promising route to address this issue, in conjunction with the conservative interactions of the CG model obtained with standard coarse graining methods, such as iterative Boltzmann inversion, force matching, or relative entropy minimization. We report the application of a recently introduced bottom-up dynamic coarse graining method, based on the Mori-Zwanzig formalism, which provides accurate estimates of isotropic GLE memory kernels for several CG models of liquid water. We demonstrate that, with an additional iterative optimization of the memory kernels (IOMK) for the CG water models based on a practical iterative optimization technique, the velocity autocorrelation function of liquid water can be represented very accurately within a few iterations. By considering the distinct Van Hove function, we demonstrate that, with the presented methods, an accurate representation of structural relaxation can be achieved. We consider several distinct CG potentials to study how the choice of the CG potential affects the performance of bottom-up informed and iteratively optimized models.
基于粗粒化(CG)分子液体粒子模型的分子动力学(MD)模拟通常预测加速动力学,并且不能正确表示分子振动和扩散运动的时间尺度。基于细粒度模型微观动力学的广义朗之万方程(GLE)热库参数化与 CG 模型的保守相互作用相结合,提供了一种很有前途的解决方法,这些保守相互作用是通过迭代 Boltzmann 反演、力匹配或相对熵最小化等标准粗粒化方法获得的。我们报告了最近引入的基于 Mori-Zwanzig 形式主义的自下而上动态粗粒化方法的应用,该方法为几种 CG 模型的液态水提供了各向同性 GLE 记忆核的准确估计。我们证明,通过对基于实际迭代优化技术的 CG 水模型的记忆核进行额外的迭代优化(IOMK),可以在几次迭代内非常准确地表示液态水的速度自相关函数。通过考虑独特的范霍夫函数,我们证明,通过所提出的方法,可以实现结构弛豫的精确表示。我们考虑了几种不同的 CG 势能,以研究 CG 势能的选择如何影响自下而上信息和迭代优化模型的性能。