Suppr超能文献

麦田内 NDVI 的空间变异性:对产量和籽粒蛋白质监测的信息含量和意义。

The spatial variability of NDVI within a wheat field: Information content and implications for yield and grain protein monitoring.

机构信息

Department of Biological Systems Engineering, University of Wisconsin-Madison, Madison, WI, United States of America.

Nelson Institute for Environmental Studies, University of Wisconsin-Madison, Madison, WI, United States of America.

出版信息

PLoS One. 2022 Mar 22;17(3):e0265243. doi: 10.1371/journal.pone.0265243. eCollection 2022.

Abstract

Wheat is a staple crop that is critical for feeding a hungry and growing planet, but its nutritive value has declined as global temperatures have warmed. The price offered to producers depends not only on yield but also grain protein content (GPC), which are often negatively related at the field scale but can positively covary depending in part on management strategies, emphasizing the need to understand their variability within individual fields. We measured yield and GPC in a winter wheat field in Sun River, Montana, USA, and tested the ability of normalized difference vegetation index (NDVI) measurements from an unoccupied aerial vehicle (UAV) on spatial scales of ~10 cm and from Landsat on spatial scales of 30 m to predict them. Landsat observations were poorly related to yield and GPC measurements. A multiple linear model using information from four (three) UAV flyovers was selected as the most parsimonious and predicted 26% (40%) of the variability in wheat yield (GPC). We sought to understand the optimal spatial scale for interpreting UAV observations given that the ~ 10 cm pixels yielded more than 12 million measurements at far finer resolution than the 12 m scale of the harvester. The variance in NDVI observations was "averaged out" at larger pixel sizes but only ~ 20% of the total variance was averaged out at the spatial scale of the harvester on some measurement dates. Spatial averaging to the scale of the harvester also made little difference in the total information content of NDVI fit using Beta distributions as quantified using the Kullback-Leibler divergence. Radially-averaged power spectra of UAV-measured NDVI revealed relatively steep power-law relationships with exponentially less variance at finer spatial scales. Results suggest that larger pixels can reasonably capture the information content of within-field NDVI, but the 30 m Landsat scale is too coarse to describe some of the key features of the field, which are consistent with topography, historic management practices, and edaphic variability. Future research should seek to determine an 'optimum' spatial scale for NDVI observations that minimizes effort (and therefore cost) while maintaining the ability of producers to make management decisions that positively impact wheat yield and GPC.

摘要

小麦是一种重要的主食作物,对养活饥饿和不断增长的地球至关重要,但随着全球气温变暖,其营养价值已经下降。向生产者提供的价格不仅取决于产量,还取决于谷物蛋白质含量(GPC),在田间尺度上,这两者通常呈负相关,但部分取决于管理策略,它们也可以正相关,这强调了需要了解其在单个田间内的变异性。我们在美国蒙大拿州太阳河的冬小麦田中测量了产量和 GPC,并测试了来自无人机(UAV)的归一化差异植被指数(NDVI)测量值在约 10 厘米的空间尺度上和来自 Landsat 在 30 米的空间尺度上预测它们的能力。Landsat 观测值与产量和 GPC 测量值相关性较差。使用来自四个(三个)UAV 飞越的信息的多元线性模型被选为最简约的模型,并预测了小麦产量(GPC)的 26%(40%)可变性。由于10 厘米的像素在比收割机的 12 米尺度远更精细的分辨率下产生了超过 1200 万个测量值,因此我们试图了解在解释 UAV 观测值时的最佳空间尺度。NDVI 观测值的方差在较大的像素尺寸下“平均化”,但在某些测量日期,仅在收割机的空间尺度上平均化了20%的总方差。在收割机的尺度上进行空间平均化,对使用 Beta 分布量化的 NDVI 拟合的总信息量也没有太大影响,如使用 Kullback-Leibler 散度来衡量。UAV 测量的 NDVI 的径向平均功率谱揭示了相对陡峭的幂律关系,在较细的空间尺度上,方差呈指数减少。结果表明,较大的像素可以合理地捕获田间内 NDVI 的信息含量,但 30 米的 Landsat 尺度太粗糙,无法描述田间的一些关键特征,这些特征与地形、历史管理实践和土壤变异性一致。未来的研究应该寻求确定 NDVI 观测的“最佳”空间尺度,该尺度应在最小化(因此成本)的同时保持生产者做出积极影响小麦产量和 GPC 的管理决策的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0e4/8939815/98a78acc692f/pone.0265243.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验