Suppr超能文献

整合无人机多光谱成像与近距离传感用于高精度谷物作物监测。

Integrating UAV multispectral imaging and proximal sensing for high-precision cereal crop monitoring.

作者信息

Grbović Željana, Ivošević Bojana, Budjen Maša, Waqar Rana, Pajević Nina, Ljubičić Natasa, Kandić Vesna, Pajić Miloš, Panić Marko

机构信息

BioSense Institute, University of Novi Sad, Novi Sad, Serbia.

Breeding Department, Maize Research Institute Zemun Polje, Belgrade, Serbia.

出版信息

PLoS One. 2025 May 22;20(5):e0322712. doi: 10.1371/journal.pone.0322712. eCollection 2025.

Abstract

Multispectral optical data significantly enhances cereal crop monitoring by enabling precise tracking of growth stages, early detection of germination issues, and assessment of plant health. This study evaluates the potential of integrating UAV multispectral sensor with the handheld Plant-O-Meter device for high-precision crop monitoring. The aim was to determine the optimal UAV imaging timing that aligns with proximal sensor measurements to improve growth stage assessments. Experiments were conducted on 41 cereal genotypes, including ancient and modern varieties, under two nitrogen top-dress dosages across 130 plots. The top ten performing genotypes were analyzed to identify resilient varieties adaptable to climate change and evolving field conditions. Our results demonstrate that vegetation indices during booting and spike emergence stages consistently predict yield potential, offering a robust framework for early-stage yield estimation. Additionally, we provide a comparative analysis of UAV and handheld sensor data, highlighting their respective strengths and limitations. Three vegetation indices, GRDVI, NDVI and SAVI demonstrated a very strong average positive correlation: 0.957, 0.954 and 0.944 across the selected genotypes from different performance levels. The combined dataset supports improved fertilization strategies, optimized seeding cycles, and identification of genotypes with stable agronomic traits. This study underscores the synergistic potential of aerial and proximal sensing technologies for next-generation cereal crop management and precision agriculture.

摘要

多光谱光学数据通过能够精确跟踪作物生长阶段、早期检测发芽问题以及评估作物健康状况,显著增强了谷类作物监测能力。本研究评估了将无人机多光谱传感器与手持式植物测量仪集成用于高精度作物监测的潜力。目的是确定与近端传感器测量结果相匹配的最佳无人机成像时间,以改善生长阶段评估。在130个地块上,对41种谷类基因型(包括古代和现代品种)进行了两种氮肥追肥剂量的试验。对表现最佳的前十种基因型进行分析,以确定适应气候变化和不断变化的田间条件的抗性品种。我们的结果表明,孕穗期和抽穗期的植被指数始终能够预测产量潜力,为早期产量估计提供了一个强大的框架。此外,我们对无人机和手持式传感器数据进行了比较分析,突出了它们各自的优势和局限性。在来自不同性能水平的选定基因型中,三种植被指数GRDVI、NDVI和SAVI表现出非常强的平均正相关:分别为0.957、0.954和0.944。合并后的数据集有助于改进施肥策略、优化播种周期以及识别具有稳定农艺性状的基因型。本研究强调了航空遥感和近端传感技术在下一代谷类作物管理和精准农业中的协同潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ec/12097617/7668d5ab2d0a/pone.0322712.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验