State Key Laboratory of Integrated Services Networks, Xidian University, Shaanxi 710071, China.
Beijing Aerospace Automatic Control Institute, Beijing 100854, China.
Neural Netw. 2022 Jun;150:112-118. doi: 10.1016/j.neunet.2022.02.018. Epub 2022 Mar 5.
In the absence of unseen training data, zero-shot learning algorithms utilize the semantic knowledge shared by the seen and unseen classes to establish the connection between the visual space and the semantic space, so as to realize the recognition of the unseen classes. However, in real applications, the original semantic representation cannot well characterize both the class-specificity structure and discriminative information in dimension space, which leads to unseen classes being easily misclassified into seen classes. To tackle this problem, we propose a Salient Attributes Learning Network (SALN) to generate discriminative and expressive semantic representation under the supervision of the visual features. Meanwhile, ℓ-norm constraint is employed to make the learned semantic representation well characterize the class-specificity structure and discriminative information in dimension space. Then feature alignment network projects the learned semantic representation into visual space and a relation network is adopted for classification. The performance of the proposed approach has made progress on the five benchmark datasets in generalized zero-shot learning task, and in-depth experiments indicate the effectiveness and excellence of our method.
在缺乏未见训练数据的情况下,零样本学习算法利用所见和未见类之间共享的语义知识,在视觉空间和语义空间之间建立联系,从而实现对未见类的识别。然而,在实际应用中,原始语义表示不能很好地描述维度空间中的类特异性结构和判别信息,这导致未见类容易被错误地分类到所见类中。为了解决这个问题,我们提出了一种显著属性学习网络 (SALN),在视觉特征的监督下生成具有判别力和表现力的语义表示。同时,采用 ℓ-norm 约束使学习到的语义表示很好地描述维度空间中的类特异性结构和判别信息。然后,特征对齐网络将学习到的语义表示投影到视觉空间中,并采用关系网络进行分类。所提出的方法在广义零样本学习任务的五个基准数据集上取得了进展,深入的实验表明了我们方法的有效性和优越性。