Suppr超能文献

数据非依赖型采集质谱技术在重症风湿性心脏病(RHD)中识别出一种蛋白质组学特征,该特征显示存在持续炎症,并能有效区分RHD病例。

Data-independent acquisition mass spectrometry in severe rheumatic heart disease (RHD) identifies a proteomic signature showing ongoing inflammation and effectively classifying RHD cases.

作者信息

Salie M Taariq, Yang Jing, Ramírez Medina Carlos R, Zühlke Liesl J, Chishala Chishala, Ntsekhe Mpiko, Gitura Bernard, Ogendo Stephen, Okello Emmy, Lwabi Peter, Musuku John, Mtaja Agnes, Hugo-Hamman Christopher, El-Sayed Ahmed, Damasceno Albertino, Mocumbi Ana, Bode-Thomas Fidelia, Yilgwan Christopher, Amusa Ganiyu A, Nkereuwem Esin, Shaboodien Gasnat, Da Silva Rachael, Lee Dave Chi Hoo, Frain Simon, Geifman Nophar, Whetton Anthony D, Keavney Bernard, Engel Mark E

机构信息

AFROStrep Research Group, Department of Medicine, University of Cape Town, Cape Town, South Africa.

Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.

出版信息

Clin Proteomics. 2022 Mar 22;19(1):7. doi: 10.1186/s12014-022-09345-1.

Abstract

BACKGROUND

Rheumatic heart disease (RHD) remains a major source of morbidity and mortality in developing countries. A deeper insight into the pathogenetic mechanisms underlying RHD could provide opportunities for drug repurposing, guide recommendations for secondary penicillin prophylaxis, and/or inform development of near-patient diagnostics.

METHODS

We performed quantitative proteomics using Sequential Windowed Acquisition of All Theoretical Fragment Ion Mass Spectrometry (SWATH-MS) to screen protein expression in 215 African patients with severe RHD, and 230 controls. We applied a machine learning (ML) approach to feature selection among the 366 proteins quantifiable in at least 40% of samples, using the Boruta wrapper algorithm. The case-control differences and contribution to Area Under the Receiver Operating Curve (AUC) for each of the 56 proteins identified by the Boruta algorithm were calculated by Logistic Regression adjusted for age, sex and BMI. Biological pathways and functions enriched for proteins were identified using ClueGo pathway analyses.

RESULTS

Adiponectin, complement component C7 and fibulin-1, a component of heart valve matrix, were significantly higher in cases when compared with controls. Ficolin-3, a protein with calcium-independent lectin activity that activates the complement pathway, was lower in cases than controls. The top six biomarkers from the Boruta analyses conferred an AUC of 0.90 indicating excellent discriminatory capacity between RHD cases and controls.

CONCLUSIONS

These results support the presence of an ongoing inflammatory response in RHD, at a time when severe valve disease has developed, and distant from previous episodes of acute rheumatic fever. This biomarker signature could have potential utility in recognizing different degrees of ongoing inflammation in RHD patients, which may, in turn, be related to prognostic severity.

摘要

背景

风湿性心脏病(RHD)仍是发展中国家发病和死亡的主要原因。对RHD潜在发病机制的深入了解可为药物重新利用提供机会,指导二级青霉素预防建议,和/或为即时检验的发展提供信息。

方法

我们使用全理论碎片离子质谱的顺序窗口采集(SWATH-MS)进行定量蛋白质组学,以筛选215例患有严重RHD的非洲患者和230例对照中的蛋白质表达。我们应用机器学习(ML)方法,使用Boruta包装算法在至少40%的样本中可定量的366种蛋白质中进行特征选择。通过对年龄、性别和体重指数进行调整的逻辑回归,计算Boruta算法识别的56种蛋白质中每种蛋白质的病例对照差异和对受试者工作特征曲线下面积(AUC)的贡献。使用ClueGo通路分析确定蛋白质富集的生物通路和功能。

结果

与对照组相比,脂联素、补体成分C7和心脏瓣膜基质成分纤维连接蛋白-1在病例组中显著升高。激活补体途径的具有不依赖钙的凝集素活性的蛋白质纤维胶凝蛋白-3在病例组中低于对照组。Boruta分析中的前六种生物标志物的AUC为0.90,表明在RHD病例和对照之间具有出色的区分能力。

结论

这些结果支持在严重瓣膜疾病已经发展且远离先前急性风湿热发作时,RHD中存在持续的炎症反应。这种生物标志物特征可能在识别RHD患者不同程度的持续炎症方面具有潜在用途,而这反过来可能与预后严重程度相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca5/8939134/6a7df59e564e/12014_2022_9345_Fig1_HTML.jpg

相似文献

2
Long-term antibiotic prophylaxis for prevention of rheumatic fever recurrence and progression to rheumatic heart disease.
Cochrane Database Syst Rev. 2024 Sep 23;9(9):CD015779. doi: 10.1002/14651858.CD015779.
4
Mechanistic implications of altered protein expression in rheumatic heart disease.
Heart Fail Rev. 2022 Jan;27(1):357-368. doi: 10.1007/s10741-020-09993-1.
5
Evaluation of Ficolin-3 deficiency as a risk factor in the development of rheumatic heart disease.
BMC Res Notes. 2025 May 8;18(1):205. doi: 10.1186/s13104-025-07251-x.
6
Fetuin-A as a plausible biomarker for cardiac valve calcification in rheumatic heart disease patients from North India.
Asian Cardiovasc Thorac Ann. 2025 Jan;33(1):14-20. doi: 10.1177/02184923241306482. Epub 2024 Dec 12.
7
Ficolin-3 in rheumatic fever and rheumatic heart disease.
Immunol Lett. 2021 Jan;229:27-31. doi: 10.1016/j.imlet.2020.11.006. Epub 2020 Nov 21.
8
Pathology and pathogenesis of rheumatic heart disease.
Indian J Pathol Microbiol. 2007 Oct;50(4):685-97.

引用本文的文献

1
Evaluation of Ficolin-3 deficiency as a risk factor in the development of rheumatic heart disease.
BMC Res Notes. 2025 May 8;18(1):205. doi: 10.1186/s13104-025-07251-x.
2
Rheumatic heart valve disease: navigating the challenges of an overlooked autoimmune disorder.
Front Cardiovasc Med. 2025 Mar 13;12:1537104. doi: 10.3389/fcvm.2025.1537104. eCollection 2025.
3
Machine Learning-Based Prediction of Binge Drinking among Adults in the United State: Analysis of the 2022 Health Information National Trends Survey.
Proc 2024 9th Int Conf Math Artif Intell (2024). 2024 May;2024:1-10. doi: 10.1145/3670085.3670090. Epub 2024 Aug 22.
4
Rheumatic Heart Disease Burden in Africa and the Need to Build Robust Infrastructure.
JACC Adv. 2024 Oct 30;3(12):101347. doi: 10.1016/j.jacadv.2024.101347. eCollection 2024 Dec.
5
Making a difference: 5 years of Cardiac Surgery Intersociety Alliance (CSIA).
Asian Cardiovasc Thorac Ann. 2024 Jun;32(5):271-284. doi: 10.1177/02184923241259191. Epub 2024 Jun 13.
6
Making a difference: 5 years of Cardiac Surgery Intersociety Alliance (CSIA).
Eur J Cardiothorac Surg. 2024 Jun 3;65(6). doi: 10.1093/ejcts/ezae048.
8
Proteomic analysis identifies subgroups of patients with active systemic lupus erythematosus.
Clin Proteomics. 2023 Jul 29;20(1):29. doi: 10.1186/s12014-023-09420-1.
9
Rationale, Design, and the Baseline Characteristics of the RHDGen (The Genetics of Rheumatic Heart Disease) Network Study†.
Circ Genom Precis Med. 2023 Feb;16(1):e003641. doi: 10.1161/CIRCGEN.121.003641. Epub 2022 Dec 22.

本文引用的文献

2
OptiMissP: A dashboard to assess missingness in proteomic data-independent acquisition mass spectrometry.
PLoS One. 2021 Apr 15;16(4):e0249771. doi: 10.1371/journal.pone.0249771. eCollection 2021.
4
Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update From the GBD 2019 Study.
J Am Coll Cardiol. 2020 Dec 22;76(25):2982-3021. doi: 10.1016/j.jacc.2020.11.010.
5
Alternative Hypothesis to Explain Disease Progression in Rheumatic Heart Disease.
Circulation. 2020 Dec;142(22):2091-2094. doi: 10.1161/CIRCULATIONAHA.120.050955. Epub 2020 Nov 30.
6
Ficolin-3 in rheumatic fever and rheumatic heart disease.
Immunol Lett. 2021 Jan;229:27-31. doi: 10.1016/j.imlet.2020.11.006. Epub 2020 Nov 21.
7
A random forest based biomarker discovery and power analysis framework for diagnostics research.
BMC Med Genomics. 2020 Nov 23;13(1):178. doi: 10.1186/s12920-020-00826-6.
9
Mechanistic implications of altered protein expression in rheumatic heart disease.
Heart Fail Rev. 2022 Jan;27(1):357-368. doi: 10.1007/s10741-020-09993-1.
10
Multifaceted Physiological Roles of Adiponectin in Inflammation and Diseases.
Int J Mol Sci. 2020 Feb 12;21(4):1219. doi: 10.3390/ijms21041219.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验