Suppr超能文献

广义加性模型中有序预测因子的统计推断及其在支气管肺发育不良中的应用。

Statistical inference for ordinal predictors in generalized additive models with application to Bronchopulmonary Dysplasia.

机构信息

School of Economics and Social Sciences, Helmut Schmidt University/University of the Federal Armed Forces, Hamburg, Germany.

Department of Statistics, Ludwig Maximilians University, Munich, Germany.

出版信息

BMC Res Notes. 2022 Mar 22;15(1):112. doi: 10.1186/s13104-022-05995-4.

Abstract

OBJECTIVE

Discrete but ordered covariates are quite common in applied statistics, and some regularized fitting procedures have been proposed for proper handling of ordinal predictors in statistical models. Motivated by a study from neonatal medicine on Bronchopulmonary Dysplasia (BPD), we show how quadratic penalties on adjacent dummy coefficients of ordinal factors proposed in the literature can be incorporated in the framework of generalized additive models, making tools for statistical inference developed there available for ordinal predictors as well.

RESULTS

The approach presented allows to exploit the scale level of ordinally scaled factors in a sound statistical framework. Furthermore, several ordinal factors can be considered jointly without the need to collapse levels even if the number of observations per level is small. By doing so, results obtained earlier on the BPD data analyzed could be confirmed.

摘要

目的

离散但有序的协变量在应用统计学中很常见,并且已经提出了一些正则化拟合程序来正确处理统计模型中的有序预测因子。受新生儿医学中关于支气管肺发育不良(BPD)的一项研究的启发,我们展示了如何将文献中提出的有序因子相邻虚拟系数的二次惩罚纳入广义加性模型框架中,使那里开发的统计推断工具也可用于有序预测因子。

结果

所提出的方法允许在合理的统计框架中利用有序刻度因子的刻度水平。此外,即使每个水平的观测数量较少,也可以联合考虑多个有序因子,而无需合并水平。通过这样做,可以确认之前在分析 BPD 数据时得到的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d59/8939193/a2fa003f36a2/13104_2022_5995_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验