文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于 mRNA 的治疗方法中,mRNA 结构、稳定性和翻译的组合优化。

Combinatorial optimization of mRNA structure, stability, and translation for RNA-based therapeutics.

机构信息

Department of Genetics, Stanford University, Stanford, CA, 94305, USA.

Department of Biochemistry, Stanford University, Stanford, CA, 94305, USA.

出版信息

Nat Commun. 2022 Mar 22;13(1):1536. doi: 10.1038/s41467-022-28776-w.


DOI:10.1038/s41467-022-28776-w
PMID:35318324
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8940940/
Abstract

Therapeutic mRNAs and vaccines are being developed for a broad range of human diseases, including COVID-19. However, their optimization is hindered by mRNA instability and inefficient protein expression. Here, we describe design principles that overcome these barriers. We develop an RNA sequencing-based platform called PERSIST-seq to systematically delineate in-cell mRNA stability, ribosome load, as well as in-solution stability of a library of diverse mRNAs. We find that, surprisingly, in-cell stability is a greater driver of protein output than high ribosome load. We further introduce a method called In-line-seq, applied to thousands of diverse RNAs, that reveals sequence and structure-based rules for mitigating hydrolytic degradation. Our findings show that highly structured "superfolder" mRNAs can be designed to improve both stability and expression with further enhancement through pseudouridine nucleoside modification. Together, our study demonstrates simultaneous improvement of mRNA stability and protein expression and provides a computational-experimental platform for the enhancement of mRNA medicines.

摘要

治疗性 mRNA 和疫苗正在被开发用于广泛的人类疾病,包括 COVID-19。然而,它们的优化受到 mRNA 不稳定性和蛋白质表达效率低下的阻碍。在这里,我们描述了克服这些障碍的设计原则。我们开发了一种称为 PERSIST-seq 的 RNA 测序为基础的平台,用于系统地描绘细胞内 mRNA 的稳定性、核糖体负载以及多样化 mRNA 库的溶液稳定性。我们发现,令人惊讶的是,细胞内稳定性是蛋白质产量的一个更大的驱动因素,而不是高核糖体负载。我们进一步引入了一种称为 In-line-seq 的方法,应用于数千种不同的 RNA,揭示了减轻水解降解的基于序列和结构的规则。我们的研究结果表明,可以设计高度结构化的“超级折叠”mRNA,以提高稳定性和表达,进一步通过假尿嘧啶核苷修饰进行增强。总之,我们的研究表明,同时提高了 mRNA 的稳定性和蛋白质的表达,并为 mRNA 药物的增强提供了一个计算实验平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2ef/8940940/d31ce9c5810d/41467_2022_28776_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2ef/8940940/aeecc1dbbfb1/41467_2022_28776_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2ef/8940940/2cdccb3e90c5/41467_2022_28776_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2ef/8940940/b39bbb260ac5/41467_2022_28776_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2ef/8940940/3aef79f3b64a/41467_2022_28776_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2ef/8940940/d31ce9c5810d/41467_2022_28776_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2ef/8940940/aeecc1dbbfb1/41467_2022_28776_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2ef/8940940/2cdccb3e90c5/41467_2022_28776_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2ef/8940940/b39bbb260ac5/41467_2022_28776_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2ef/8940940/3aef79f3b64a/41467_2022_28776_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2ef/8940940/d31ce9c5810d/41467_2022_28776_Fig5_HTML.jpg

相似文献

[1]
Combinatorial optimization of mRNA structure, stability, and translation for RNA-based therapeutics.

Nat Commun. 2022-3-22

[2]
Combinatorial optimization of mRNA structure, stability, and translation for RNA-based therapeutics.

bioRxiv. 2021-3-30

[3]
Pseudouridinylation of mRNA coding sequences alters translation.

Proc Natl Acad Sci U S A. 2019-10-31

[4]
Attenuating ribosome load improves protein output from mRNA by limiting translation-dependent mRNA decay.

Cell Rep. 2024-4-23

[5]
N1-methyl-pseudouridine in mRNA enhances translation through eIF2α-dependent and independent mechanisms by increasing ribosome density.

Nucleic Acids Res. 2017-6-2

[6]
Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation.

Nucleic Acids Res. 2010-9

[7]
Membrane-dependent relief of translation elongation arrest on pseudouridine- and N1-methyl-pseudouridine-modified mRNAs.

Nucleic Acids Res. 2022-7-22

[8]
Machine Learning for Designing Next-Generation mRNA Therapeutics.

Acc Chem Res. 2022-1-4

[9]
Pseudouridine site assignment by high-throughput in vitro RNA pseudouridylation and sequencing.

Methods Enzymol. 2021

[10]
Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells.

Nature. 2014-11-6

引用本文的文献

[1]
Fine scale structural information substantially improves multivariate regression model for mRNA in-vial degradation prediction.

bioRxiv. 2025-8-23

[2]
A modular vaccine platform for optimized lipid nanoparticle mRNA immunogenicity.

Nat Biomed Eng. 2025-8-25

[3]
mRNA folding algorithms for structure and codon optimization.

Brief Bioinform. 2025-7-2

[4]
Nanotechnology-based mRNA vaccines.

Nat Rev Methods Primers. 2023

[5]
Challenges and opportunities in mRNA vaccine development against bacteria.

Nat Microbiol. 2025-8

[6]
Development of an mRNA vaccine encoding IHNV glycoprotein protects rainbow trout (Oncorhynchus mykiss) from infection.

NPJ Vaccines. 2025-7-22

[7]
mRNABench: A curated benchmark for mature mRNA property and function prediction.

bioRxiv. 2025-7-8

[8]
A generalized and efficient approach for complete mRNA design improves translation, stability and specificity.

bioRxiv. 2025-6-17

[9]
EnsembleDesign: messenger RNA design minimizing ensemble free energy via probabilistic lattice parsing.

Bioinformatics. 2025-7-1

[10]
A proximity-labeling-based approach to directly detect mRNA delivery to specific subcellular locations.

Mol Ther Nucleic Acids. 2025-6-24

本文引用的文献

[1]
Theoretical basis for stabilizing messenger RNA through secondary structure design.

Nucleic Acids Res. 2021-10-11

[2]
High-throughput 5' UTR engineering for enhanced protein production in non-viral gene therapies.

Nat Commun. 2021-7-6

[3]
A Dengue Virus Serotype 1 mRNA-LNP Vaccine Elicits Protective Immune Responses.

J Virol. 2021-5-24

[4]
Comprehensive in vivo secondary structure of the SARS-CoV-2 genome reveals novel regulatory motifs and mechanisms.

Mol Cell. 2021-2-4

[5]
Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine.

N Engl J Med. 2021-2-4

[6]
Structure and regulation of coronavirus genomes: state-of-the-art and novel insights from SARS-CoV-2 studies.

Biochem Soc Trans. 2021-2-26

[7]
Addressing the Cold Reality of mRNA Vaccine Stability.

J Pharm Sci. 2021-3

[8]
Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine.

N Engl J Med. 2020-12-31

[9]
Gene- and Species-Specific Hox mRNA Translation by Ribosome Expansion Segments.

Mol Cell. 2020-12-17

[10]
Genome-wide mapping of SARS-CoV-2 RNA structures identifies therapeutically-relevant elements.

Nucleic Acids Res. 2020-12-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索