Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA.
Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA.
J Virol. 2022 Apr 13;96(7):e0005722. doi: 10.1128/jvi.00057-22. Epub 2022 Mar 23.
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused over 5 million deaths worldwide. Pneumonia and systemic inflammation contribute to its high mortality. Many viruses use heparan sulfate proteoglycans as coreceptors for viral entry, and heparanase (HPSE) is a known regulator of both viral entry and inflammatory cytokines. We evaluated the heparanase inhibitor Roneparstat, a modified heparin with minimum anticoagulant activity, in pathophysiology and therapy for COVID-19. We found that Roneparstat significantly decreased the infectivity of SARS-CoV-2, SARS-CoV-1, and retroviruses (human T-lymphotropic virus 1 [HTLV-1] and HIV-1) . Single-cell RNA sequencing (scRNA-seq) analysis of cells from the bronchoalveolar lavage fluid of COVID-19 patients revealed a marked increase in gene expression in CD68 macrophages compared to healthy controls. Elevated levels of expression in macrophages correlated with the severity of COVID-19 and the expression of inflammatory cytokine genes, including , , , and . In line with this finding, we found a marked induction of and numerous inflammatory cytokines in human macrophages challenged with SARS-CoV-2 S1 protein. Treatment with Roneparstat significantly attenuated SARS-CoV-2 S1 protein-mediated inflammatory cytokine release from human macrophages, through disruption of NF-κB signaling. knockdown in a macrophage cell line also showed diminished inflammatory cytokine production during S1 protein challenge. Taken together, this study provides a proof of concept that heparanase is a target for SARS-CoV-2-mediated pathogenesis and that Roneparstat may serve as a dual-targeted therapy to reduce viral infection and inflammation in COVID-19. The complex pathogenesis of COVID-19 consists of two major pathological phases: an initial infection phase elicited by SARS-CoV-2 entry and replication and an inflammation phase that could lead to tissue damage, which can evolve into acute respiratory failure or even death. While the development and deployment of vaccines are ongoing, effective therapy for COVID-19 is still urgently needed. In this study, we explored HPSE blockade with Roneparstat, a phase I clinically tested HPSE inhibitor, in the context of COVID-19 pathogenesis. Treatment with Roneparstat showed wide-spectrum anti-infection activities against SARS-CoV-2, HTLV-1, and HIV-1 . In addition, HPSE blockade with Roneparstat significantly attenuated SARS-CoV-2 S1 protein-induced inflammatory cytokine release from human macrophages through disruption of NF-κB signaling. Together, this study provides a proof of principle for the use of Roneparstat as a dual-targeting therapy for COVID-19 to decrease viral infection and dampen the proinflammatory immune response mediated by macrophages.
新型冠状病毒病 2019(COVID-19)大流行是由严重急性呼吸系统综合征冠状病毒 2(SARS-CoV-2)引起的,已导致全球超过 500 万人死亡。肺炎和全身炎症是导致其高死亡率的原因。许多病毒将肝素硫酸蛋白聚糖作为病毒进入的核心受体,肝素酶(HPSE)是病毒进入和炎症细胞因子的已知调节剂。我们评估了新型冠状病毒病 2019 发病机制和治疗中的肝素酶抑制剂 Roneparstat,这是一种具有最小抗凝活性的改良肝素。我们发现 Roneparstat 可显著降低 SARS-CoV-2、SARS-CoV-1 和逆转录病毒(人类 T 淋巴细胞病毒 1[HTLV-1]和 HIV-1)的感染性。对 COVID-19 患者支气管肺泡灌洗液细胞的单细胞 RNA 测序(scRNA-seq)分析显示,与健康对照相比,CD68 巨噬细胞中 基因的表达明显增加。巨噬细胞中 表达水平的升高与 COVID-19 的严重程度以及炎症细胞因子基因的表达相关,包括 、 、 和 。与这一发现一致,我们发现人类巨噬细胞受到 SARS-CoV-2 S1 蛋白的刺激后, 和许多炎症细胞因子明显诱导。用 Roneparstat 处理可通过破坏 NF-κB 信号显著减轻 SARS-CoV-2 S1 蛋白介导的人巨噬细胞炎症细胞因子释放。在 S1 蛋白刺激期间,巨噬细胞系中的 敲低也显示出炎症细胞因子产生减少。总之,这项研究提供了一个概念验证,即肝素酶是 SARS-CoV-2 介导的发病机制的靶点,Roneparstat 可能作为一种双重靶向治疗药物,用于减轻 COVID-19 中的病毒感染和炎症。COVID-19 的复杂发病机制包括两个主要的病理阶段:由 SARS-CoV-2 进入和复制引起的初始感染阶段,以及可能导致组织损伤的炎症阶段,这可能发展为急性呼吸衰竭甚至死亡。虽然疫苗的开发和部署正在进行中,但 COVID-19 的有效治疗仍迫切需要。在这项研究中,我们探讨了 Roneparstat 在 COVID-19 发病机制中的作用,Roneparstat 是一种已在临床 I 期试验的 HPSE 抑制剂。用 Roneparstat 治疗显示出针对 SARS-CoV-2、HTLV-1 和 HIV-1 的广谱抗感染活性。此外,用 Roneparstat 阻断 HPSE 通过破坏 NF-κB 信号显著减轻了 SARS-CoV-2 S1 蛋白诱导的人巨噬细胞炎症细胞因子释放。总之,这项研究为使用 Roneparstat 作为 COVID-19 的双重靶向治疗药物提供了一个原理验证,以减少病毒感染并抑制巨噬细胞介导的促炎免疫反应。