Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital (Unity Health Toronto) and Department of Medicine, University of Toronto, Toronto, Ontario M5B 1T8, Canada.
Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital and Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1X5, Canada.
Sci Transl Med. 2022 Mar 23;14(637):eaaz4028. doi: 10.1126/scitranslmed.aaz4028.
Fibrosis is a central pathway that drives progression of multiple chronic diseases, yet few safe and effective clinical antifibrotic therapies exist. In most fibrotic disorders, transforming growth factor-β (TGF-β)-driven scarring is an important pathologic feature and a key contributor to disease progression. Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are two closely related transcription cofactors that are important for coordinating fibrogenesis after organ injury, but how they are activated in response to tissue injury has, so far, remained unclear. Here, we describe NUAK family kinase 1 (NUAK1) as a TGF-β-inducible profibrotic kinase that is up-regulated in multiple fibrotic organs in mice and humans. Mechanistically, we show that TGF-β induces a rapid increase in NUAK1 in fibroblasts. NUAK1, in turn, can promote profibrotic YAP and TGF-β/SMAD signaling, ultimately leading to organ scarring. Moreover, activated YAP and TAZ can induce further NUAK1 expression, creating a profibrotic positive feedback loop that enables persistent fibrosis. Using mouse models of kidney, lung, and liver fibrosis, we demonstrate that this fibrogenic signaling loop can be interrupted via fibroblast-specific loss of NUAK1 expression, leading to marked attenuation of fibrosis. Pharmacologic NUAK1 inhibition also reduced scarring, either when initiated immediately after injury or when initiated after fibrosis was already established. Together, our data suggest that NUAK1 plays a critical, previously unrecognized role in fibrogenesis and represents an attractive target for strategies that aim to slow fibrotic disease progression.
纤维化是驱动多种慢性疾病进展的核心途径,但目前仅有少数安全有效的临床抗纤维化疗法。在大多数纤维化疾病中,转化生长因子-β(TGF-β)驱动的瘢痕形成是一个重要的病理特征,也是疾病进展的关键因素。Yes 相关蛋白(YAP)和含 PDZ 结合基序的转录共激活因子(TAZ)是两个密切相关的转录共激活因子,对于器官损伤后协调纤维化非常重要,但它们如何被激活以响应组织损伤,目前仍不清楚。在这里,我们描述了 NUAK 家族激酶 1(NUAK1)是一种 TGF-β诱导的促纤维化激酶,在小鼠和人类的多种纤维化器官中都有上调。从机制上讲,我们表明 TGF-β可诱导成纤维细胞中 NUAK1 的快速增加。反过来,NUAK1 可以促进促纤维化 YAP 和 TGF-β/SMAD 信号转导,最终导致器官瘢痕形成。此外,激活的 YAP 和 TAZ 可以诱导进一步的 NUAK1 表达,形成促纤维化的正反馈回路,使纤维化持续存在。使用肾脏、肺和肝脏纤维化的小鼠模型,我们证明可以通过成纤维细胞特异性缺失 NUAK1 表达来阻断这种促纤维化信号通路,从而显著减轻纤维化。NUAK1 的药理学抑制作用也减少了瘢痕形成,无论是在损伤后立即开始还是在纤维化已经建立后开始。总之,我们的数据表明,NUAK1 在纤维化发生中起着至关重要的、以前未被认识的作用,是减缓纤维化疾病进展的有吸引力的治疗靶点。
Sci Transl Med. 2022-3-23
J Am Soc Nephrol. 2016-10
Am J Physiol Lung Cell Mol Physiol. 2015-2-15
J Invest Dermatol. 2017-9-1
Int J Mol Sci. 2018-11-20
Histol Histopathol. 2021-9
Adv Sci (Weinh). 2025-6
Proc Natl Acad Sci U S A. 2025-4-22
Nat Biomed Eng. 2025-3-24
MedComm (2020). 2025-3-10
J Transl Med. 2025-2-28
Cell Mol Biol Lett. 2024-10-17