Macromolecular Chemistry I and Bavarian Polymer Institute (BPI), University of Bayreuth, Universitätsstraße 30, Bayreuth, 95447, Germany.
Macromolecular Chemistry II and Bavarian Polymer Institute (BPI), University of Bayreuth, Universitätsstraße 30, Bayreuth, 95447, Germany.
Macromol Rapid Commun. 2022 Jun;43(12):e2200052. doi: 10.1002/marc.202200052. Epub 2022 Apr 4.
Functional, hierarchically mesostructured nonwovens are of fundamental importance because complex fiber morphologies increase the active surface area and functionality allowing for the effective immobilization of metal nanoparticles. Such complex functional fiber morphologies clearly widen the property profile and enable the preparation of more efficient and selective filter media. Here, the realization of hierarchically mesostructured nonwovens with barbed wire-like morphology is demonstrated by combining electrospun polystyrene fibers, decorated with patchy worm-like micelles, with solution-processed supramolecular short fibers composed of 1,3,5-benzenetricarboxamides with peripheral N,N-diisopropylaminoethyl substituents. The worm-like micelles with a patchy microphase-separated corona are prepared by crystallization-driven self-assembly of a polyethylene based triblock terpolymer and deposited on top of the polystyrene fibers by coaxial electrospinning. The micelles are designed in a way that their patches promote the directed self-assembly of the 1,3,5-benzenetricarboxamide and the fixation of the supramolecular nanofibers on the supporting polystyrene fibers. Functionality of the mesostructured nonwoven is provided by the peripheral N,N-diisopropylaminoethyl substituents of the 1,3,5-benzenetricarboxamide and proven by the effective immobilization of individual palladium nanoparticles on the supramolecular nanofibers. The preparation of hierarchically mesostructured nonwovens and their shown functionality demonstrate that such systems are attractive candidates to be used for example in filtration, selective separation and heterogenous catalysis.
具有功能和分级介孔结构的无纺材料非常重要,因为复杂的纤维形态增加了有效表面积和功能,从而能够有效固定金属纳米颗粒。这种复杂的功能性纤维形态明显拓宽了性能范围,并使更高效和选择性的过滤介质的制备成为可能。在这里,通过将带有块状蠕虫状胶束的电纺聚苯乙烯纤维与由带有外围 N,N-二异丙基乙胺取代基的 1,3,5-苯三甲酰胺组成的溶液处理的超分子短纤维相结合,展示了具有刺铁丝网状形态的分级介孔无纺材料的实现。具有部分微相分离的冠状的块状蠕虫状胶束是通过结晶驱动的基于聚乙烯的三嵌段嵌段共聚物的自组装制备的,并通过同轴电纺将其沉积在聚苯乙烯纤维的顶部。胶束的设计方式使其斑块促进了 1,3,5-苯三甲酰胺的定向自组装,并将超分子纳米纤维固定在支撑的聚苯乙烯纤维上。介孔无纺材料的功能是由 1,3,5-苯三甲酰胺的外围 N,N-二异丙基乙胺取代基提供的,并通过在超分子纳米纤维上有效固定单个钯纳米颗粒得到证明。分级介孔无纺材料的制备及其展示的功能表明,此类系统是用于过滤、选择性分离和多相催化等应用的有吸引力的候选材料。