Suppr超能文献

杂原子掺杂的闪蒸石墨烯

Heteroatom-Doped Flash Graphene.

作者信息

Chen Weiyin, Ge Chang, Li John Tianci, Beckham Jacob L, Yuan Zhe, Wyss Kevin M, Advincula Paul A, Eddy Lucas, Kittrell Carter, Chen Jinhang, Luong Duy Xuan, Carter Robert A, Tour James M

出版信息

ACS Nano. 2022 Apr 26;16(4):6646-6656. doi: 10.1021/acsnano.2c01136. Epub 2022 Mar 23.

Abstract

Heteroatom doping can effectively tailor the local structures and electronic states of intrinsic two-dimensional materials, and endow them with modified optical, electrical, and mechanical properties. Recent studies have shown the feasibility of preparing doped graphene from graphene oxide and its derivatives via some post-treatments, including solid-state and solvothermal methods, but they require reactive and harsh reagents. However, direct synthesis of various heteroatom-doped graphene in larger quantities and high purity through bottom-up methods remains challenging. Here, we report catalyst-free and solvent-free direct synthesis of graphene doped with various heteroatoms in bulk via flash Joule heating (FJH). Seven types of heteroatom-doped flash graphene (FG) are synthesized through millisecond flashing, including single-element-doped FG (boron, nitrogen, oxygen, phosphorus, sulfur), two-element--doped FG (boron and nitrogen), as well as three-element--doped FG (boron, nitrogen, and sulfur). A variety of low-cost dopants, such as elements, oxides, and organic compounds are used. The graphene quality of heteroatom-doped FG is high, and similar to intrinsic FG, the material exhibits turbostraticity, increased interlayer spacing, and superior dispersibility. Electrochemical oxygen reduction reaction of different heteroatom-doped FG is tested, and sulfur-doped FG shows the best performance. Lithium metal battery tests demonstrate that nitrogen-doped FG exhibits a smaller nucleation overpotential compared to Cu or undoped FG. The electrical energy cost for the synthesis of heteroatom-doped FG synthesis is only 1.2 to 10.7 kJ g, which could render the FJH method suitable for low-cost mass production of heteroatom-doped graphene.

摘要

杂原子掺杂可以有效地调整本征二维材料的局部结构和电子态,并赋予它们改性的光学、电学和力学性能。最近的研究表明,通过一些后处理方法,包括固态法和溶剂热法,由氧化石墨烯及其衍生物制备掺杂石墨烯是可行的,但这些方法需要使用活性强且苛刻的试剂。然而,通过自下而上的方法大量、高纯度地直接合成各种杂原子掺杂的石墨烯仍然具有挑战性。在此,我们报道了通过快速焦耳加热(FJH)在无催化剂和无溶剂的条件下直接批量合成掺杂各种杂原子的石墨烯。通过毫秒级闪蒸合成了七种类型的杂原子掺杂闪蒸石墨烯(FG),包括单元素掺杂的FG(硼、氮、氧、磷、硫)、双元素掺杂的FG(硼和氮)以及三元素掺杂的FG(硼、氮和硫)。使用了各种低成本的掺杂剂,如元素、氧化物和有机化合物。杂原子掺杂FG的石墨烯质量很高,与本征FG类似,该材料呈现出乱层结构、层间距增加以及优异的分散性。测试了不同杂原子掺杂FG的电化学氧还原反应,硫掺杂FG表现出最佳性能。锂金属电池测试表明,与铜或未掺杂的FG相比,氮掺杂FG表现出更小的成核过电位。合成杂原子掺杂FG的电能成本仅为1.2至10.7 kJ g,这使得FJH方法适用于低成本大规模生产杂原子掺杂石墨烯。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验