Suppr超能文献

克级规模自下而上闪蒸法合成石墨烯。

Gram-scale bottom-up flash graphene synthesis.

机构信息

Applied Physics Program, Rice University, Houston, TX, USA.

Department of Chemistry, Rice University, Houston, TX, USA.

出版信息

Nature. 2020 Jan;577(7792):647-651. doi: 10.1038/s41586-020-1938-0. Epub 2020 Jan 27.

Abstract

Most bulk-scale graphene is produced by a top-down approach, exfoliating graphite, which often requires large amounts of solvent with high-energy mixing, shearing, sonication or electrochemical treatment. Although chemical oxidation of graphite to graphene oxide promotes exfoliation, it requires harsh oxidants and leaves the graphene with a defective perforated structure after the subsequent reduction step. Bottom-up synthesis of high-quality graphene is often restricted to ultrasmall amounts if performed by chemical vapour deposition or advanced synthetic organic methods, or it provides a defect-ridden structure if carried out in bulk solution. Here we show that flash Joule heating of inexpensive carbon sources-such as coal, petroleum coke, biochar, carbon black, discarded food, rubber tyres and mixed plastic waste-can afford gram-scale quantities of graphene in less than one second. The product, named flash graphene (FG) after the process used to produce it, shows turbostratic arrangement (that is, little order) between the stacked graphene layers. FG synthesis uses no furnace and no solvents or reactive gases. Yields depend on the carbon content of the source; when using a high-carbon source, such as carbon black, anthracitic coal or calcined coke, yields can range from 80 to 90 per cent with carbon purity greater than 99 per cent. No purification steps are necessary. Raman spectroscopy analysis shows a low-intensity or absent D band for FG, indicating that FG has among the lowest defect concentrations reported so far for graphene, and confirms the turbostratic stacking of FG, which is clearly distinguished from turbostratic graphite. The disordered orientation of FG layers facilitates its rapid exfoliation upon mixing during composite formation. The electric energy cost for FG synthesis is only about 7.2 kilojoules per gram, which could render FG suitable for use in bulk composites of plastic, metals, plywood, concrete and other building materials.

摘要

大多数块状石墨烯是通过自上而下的方法制备的,即将石墨进行剥离,这种方法通常需要大量的溶剂,并采用高能混合、剪切、超声或电化学处理。虽然石墨的化学氧化可以促进石墨烯的剥离,但它需要使用苛刻的氧化剂,并且在随后的还原步骤后,会在石墨烯上留下有缺陷的穿孔结构。如果通过化学气相沉积或先进的合成有机方法进行,则高质量石墨烯的自下而上合成通常受到限制,而且如果在大量溶液中进行,则会提供有缺陷的结构。在这里,我们表明,通过廉价碳源(如煤、石油焦、生物炭、炭黑、废弃食物、橡胶轮胎和混合塑料废物)的瞬间焦耳加热,可以在不到一秒的时间内提供克级数量的石墨烯。该产品称为闪蒸石墨烯(FG),得名于生产它所使用的过程。FG 表现出层叠石墨烯之间的乱层排列(即,几乎没有有序性)。FG 合成无需炉具,也无需使用溶剂或反应性气体。产量取决于原料中的碳含量;当使用高碳源(如炭黑、无烟煤或煅烧焦)时,产量范围可以在 80%到 90%之间,碳纯度大于 99%。不需要进行净化步骤。拉曼光谱分析表明 FG 的 D 带强度低或不存在,这表明 FG 的缺陷浓度是迄今为止报道的石墨烯中最低的之一,并且证实了 FG 的乱层堆积,这与乱层石墨明显不同。FG 层的无序取向有助于在复合材料形成过程中进行快速剥离。FG 合成的电能成本仅为每克约 7.2 焦耳,这可能使 FG 适用于塑料、金属、胶合板、混凝土和其他建筑材料的批量复合材料。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验