Suppr超能文献

脑电信号的自动睡眠分期:最新进展、挑战和未来方向。

Automatic sleep staging of EEG signals: recent development, challenges, and future directions.

机构信息

School of Electronic Engineering and Computer Science, Queen Mary University of London, United Kingdom.

The Alan Turing Institute, United Kingdom.

出版信息

Physiol Meas. 2022 Apr 28;43(4). doi: 10.1088/1361-6579/ac6049.

Abstract

Modern deep learning holds a great potential to transform clinical studies of human sleep. Teaching a machine to carry out routine tasks would be a tremendous reduction in workload for clinicians. Sleep staging, a fundamental step in sleep practice, is a suitable task for this and will be the focus in this article. Recently, automatic sleep-staging systems have been trained to mimic manual scoring, leading to similar performance to human sleep experts, at least on scoring of healthy subjects. Despite tremendous progress, we have not seen automatic sleep scoring adopted widely in clinical environments. This review aims to provide the shared view of the authors on the most recent state-of-the-art developments in automatic sleep staging, the challenges that still need to be addressed, and the future directions needed for automatic sleep scoring to achieve clinical value.

摘要

现代深度学习在改变人类睡眠的临床研究方面具有巨大的潜力。教机器执行常规任务将大大减轻临床医生的工作量。睡眠分期是睡眠实践中的一个基本步骤,非常适合这项任务,本文将重点介绍这方面的内容。最近,已经开发出了自动睡眠分期系统来模拟手动评分,其表现与人类睡眠专家相当,至少在对健康受试者的评分方面是如此。尽管取得了巨大的进展,但我们尚未看到自动睡眠评分在临床环境中得到广泛应用。本文旨在提供作者对自动睡眠分期的最新技术发展、仍需解决的挑战以及自动睡眠评分实现临床价值所需的未来方向的共识。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验