International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan.
Department of Engineering Cybernetics, Norwegian University of Science and Technology, Trondheim, Norway.
Sci Rep. 2024 Aug 2;14(1):17952. doi: 10.1038/s41598-024-68978-4.
We present a new approach to classifying the sleep stage that incorporates a computationally inexpensive method based on permutations for channel selection and takes advantage of deep learning power, specifically the gated recurrent unit (GRU) model, along with other deep learning methods. By systematically permuting the electroencephalographic (EEG) channels, different combinations of EEG channels are evaluated to identify the most informative subset for the classification of the 5-class sleep stage. For analysis, we used an EEG dataset that was collected at the International Institute for Integrative Sleep Medicine (WPI-IIIS) at the University of Tsukuba in Japan. The results of these explorations provide many new insights such as the (1) drastic decrease in performance when channels are fewer than 3, (2) 3-random channels selected by permutation provide the same or better prediction than the 3 channels recommended by the American Academy of Sleep Medicine (AASM), (3) N1 class suffers the most in prediction accuracy as the channels drop from 128 to 3 random or 3 AASM, and (4) no single channel provides acceptable levels of accuracy in the prediction of 5 classes. The results obtained show the GRU's ability to retain essential temporal information from EEG data, which allows capturing the underlying patterns associated with each sleep stage effectively. Using permutation-based channel selection, we enhance or at least maintain as high model efficiency as when using high-density EEG, incorporating only the most informative EEG channels.
我们提出了一种新的睡眠阶段分类方法,该方法结合了基于排列的计算成本低的通道选择方法,并利用深度学习的力量,特别是门控循环单元(GRU)模型,以及其他深度学习方法。通过系统地排列脑电图(EEG)通道,评估 EEG 通道的不同组合,以确定对 5 类睡眠阶段分类最有用的子集。为了进行分析,我们使用了在日本筑波大学综合睡眠医学国际研究所(WPI-IIIS)收集的 EEG 数据集。这些探索的结果提供了许多新的见解,例如:(1)当通道数少于 3 时,性能会急剧下降;(2)通过排列选择的 3 个随机通道提供的预测与美国睡眠医学学会(AASM)推荐的 3 个通道相同或更好;(3)当通道从 128 个减少到 3 个随机通道或 3 个 AASM 时,N1 类的预测准确性受到的影响最大;(4)没有一个通道能够在预测 5 个类别时提供可接受的准确性水平。所得结果表明,GRU 能够从 EEG 数据中保留重要的时间信息,从而有效地捕捉与每个睡眠阶段相关的潜在模式。通过基于排列的通道选择,我们增强了模型效率,或者至少保持了与使用高密度 EEG 时一样的高模型效率,只包含最有用的 EEG 通道。