Suppr超能文献

癫痫患儿减少通道数的自动睡眠分期

Automated sleep staging on reduced channels in children with epilepsy.

作者信息

Proost Renee, Heremans Elisabeth, Lagae Lieven, Van Paesschen Wim, De Vos Maarten, Jansen Katrien

机构信息

Pediatric Neurology Department, University Hospitals Leuven, KU Leuven, Leuven, Belgium.

Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Leuven, Belgium.

出版信息

Front Neurol. 2024 May 10;15:1390465. doi: 10.3389/fneur.2024.1390465. eCollection 2024.

Abstract

OBJECTIVES

This study aimed to validate a sleep staging algorithm using in-hospital video-electroencephalogram (EEG) in children without epilepsy, with well-controlled epilepsy (WCE), and with drug-resistant epilepsy (DRE).

METHODS

Overnight video-EEG, along with electrooculogram (EOG) and chin electromyogram (EMG), was recorded in children between 4 and 18 years of age. Classical sleep staging was performed manually as a ground truth. An end-to-end hierarchical recurrent neural network for sequence-to-sequence automatic sleep staging (SeqSleepNet) was used to perform automated sleep staging using three channels: C4-A1, EOG, and chin EMG.

RESULTS

In 176 children sleep stages were manually scored: 47 children without epilepsy, 74 with WCE, and 55 with DRE. The 5-class sleep staging accuracy of the automatic sleep staging algorithm was 84.7% for the children without epilepsy, 83.5% for those with WCE, and 80.8% for those with DRE (Kappa of 0.79, 0.77, and 0.73 respectively). Performance per sleep stage was assessed with an F1 score of 0.91 for wake, 0.50 for N1, 0.83 for N2, 0.84 for N3, and 0.86 for rapid eye movement (REM) sleep.

CONCLUSION

We concluded that the tested algorithm has a high accuracy in children without epilepsy and with WCE. Performance in children with DRE was acceptable, but significantly lower, which could be explained by a tendency of more time spent in N1, and by abundant interictal epileptiform discharges and intellectual disability leading to less recognizable sleep stages. REM sleep time, however, significantly affected in children with DRE, can be detected reliably by the algorithm.: ClinicalTrials.gov, identifier NCT04584385.

摘要

目的

本研究旨在验证一种睡眠分期算法,该算法使用无癫痫、癫痫控制良好(WCE)和耐药性癫痫(DRE)儿童的住院视频脑电图(EEG)。

方法

对4至18岁儿童进行整夜视频脑电图监测,同时记录眼电图(EOG)和下颌肌电图(EMG)。经典睡眠分期由人工完成作为对照标准。使用一个用于序列到序列自动睡眠分期的端到端分层递归神经网络(SeqSleepNet),利用三个通道(C4-A1、EOG和下颌EMG)进行自动睡眠分期。

结果

对176名儿童的睡眠阶段进行了人工评分:47名无癫痫儿童,74名WCE儿童,55名DRE儿童。自动睡眠分期算法的5级睡眠分期准确率在无癫痫儿童中为84.7%,WCE儿童中为83.5%,DRE儿童中为80.8%(Kappa值分别为0.79、0.77和0.73)。每个睡眠阶段的表现通过F1分数评估,清醒时为0.91,N1期为0.50,N2期为0.83,N3期为0.84,快速眼动(REM)睡眠期为0.86。

结论

我们得出结论,所测试的算法在无癫痫和WCE儿童中具有较高的准确性。在DRE儿童中的表现尚可,但明显较低,这可能是由于在N1期花费的时间较多,以及大量的发作间期癫痫样放电和智力障碍导致睡眠阶段难以识别。然而,算法能够可靠地检测出DRE儿童中受显著影响的REM睡眠时间。:ClinicalTrials.gov,标识符NCT04584385。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89b2/11116721/47151a2ac642/fneur-15-1390465-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验