Rapti Georgia
Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
Front Neurosci. 2022 Mar 7;15:787753. doi: 10.3389/fnins.2021.787753. eCollection 2021.
Nervous system cells, the building blocks of circuits, have been studied with ever-progressing resolution, yet neural circuits appear still resistant to schemes of reductionist classification. Due to their sheer numbers, complexity and diversity, their systematic study requires concrete classifications that can serve reduced dimensionality, reproducibility, and information integration. Conventional hierarchical schemes transformed through the history of neuroscience by prioritizing criteria of morphology, (electro)physiological activity, molecular content, and circuit function, influenced by prevailing methodologies of the time. Since the molecular biology revolution and the recent advents in transcriptomics, molecular profiling gains ground toward the classification of neurons and glial cell types. Yet, transcriptomics entails technical challenges and more importantly uncovers unforeseen spatiotemporal heterogeneity, in complex and simpler nervous systems. Cells change states dynamically in space and time, in response to stimuli or throughout their developmental trajectory. Mapping cell type and state heterogeneity uncovers uncharted terrains in neurons and especially in glial cell biology, that remains understudied in many aspects. Examining neurons and glial cells from the perspectives of molecular neuroscience, physiology, development and evolution highlights the advantage of multifaceted classification schemes. Among the amalgam of models contributing to neuroscience research, combines nervous system anatomy, lineage, connectivity and molecular content, all mapped at single-cell resolution, and can provide valuable insights for the workflow and challenges of the multimodal integration of cell type features. This review reflects on concepts and practices of neuron and glial cells classification and how research, in and beyond, guides nervous system experimentation through integrated multidimensional schemes. It highlights underlying principles, emerging themes, and open frontiers in the study of nervous system development, regulatory logic and evolution. It proposes unified platforms to allow integrated annotation of large-scale datasets, gene-function studies, published or unpublished findings and community feedback. Neuroscience is moving fast toward interdisciplinary, high-throughput approaches for combined mapping of the morphology, physiology, connectivity, molecular function, and the integration of information in multifaceted schemes. A closer look in mapped neural circuits and understudied terrains offers insights for the best implementation of these approaches.
神经系统细胞作为神经回路的基本组成部分,人们对其研究的分辨率不断提高,但神经回路似乎仍难以用还原论分类方案进行分类。由于它们数量众多、复杂多样,对其进行系统研究需要具体的分类方法,以实现降维、可重复性和信息整合。传统的层次分类方案在神经科学发展历程中不断演变,受到当时主流方法的影响,优先考虑形态学、(电)生理活动、分子成分和神经回路功能等标准。自分子生物学革命以及转录组学的最新进展以来,分子谱分析在神经元和胶质细胞类型分类方面逐渐占据优势。然而,转录组学面临技术挑战,更重要的是,它揭示了复杂和简单神经系统中未曾预料到的时空异质性。细胞会根据刺激或在其整个发育轨迹中,在空间和时间上动态改变状态。绘制细胞类型和状态异质性图谱,揭示了神经元尤其是胶质细胞生物学中未知的领域,这些领域在许多方面仍未得到充分研究。从分子神经科学、生理学、发育和进化的角度研究神经元和胶质细胞,凸显了多方面分类方案的优势。在众多推动神经科学研究的模型中,结合了神经系统解剖结构、谱系、连接性和分子成分,所有这些都以单细胞分辨率进行映射,可为细胞类型特征的多模态整合的工作流程和挑战提供有价值的见解。本综述反思了神经元和胶质细胞分类的概念和实践,以及该研究如何通过综合多维方案指导神经系统实验,无论是在该研究领域内还是之外。它强调了神经系统发育、调控逻辑和进化研究中的基本原则、新兴主题和前沿领域。它提出了统一的平台,以允许对大规模数据集、基因功能研究、已发表或未发表的研究结果以及社区反馈进行综合注释。神经科学正迅速朝着跨学科、高通量的方法发展,用于在多方面方案中联合绘制形态学、生理学、连接性、分子功能以及信息整合图。仔细研究已绘制的神经回路和未充分研究的领域,可为这些方法的最佳实施提供见解。