Du Xiaosheng, Wang Jiuao, Jin Linzhao, Deng Sha, Dong Yi, Lin Shaojian
College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China.
ACS Appl Mater Interfaces. 2022 Apr 6;14(13):15225-15234. doi: 10.1021/acsami.2c00117. Epub 2022 Mar 23.
The exploitation of from-stable phase change materials (PCMs) with superior energy storage capacity and excellent solar-thermal conversion performance is crucial for the efficient exploitation of solar energy. Herein, 2D-layered polymerized dopamine-decorated TiCT MXene nanosheets (P-MXene) with superior photothermal effects and excellent oxidation stability were synthesized from TiAlC particles by the selective etching and self-polymerization of dopamine. Then, novel biomass-derived PCM composites, eMPCMs, were fabricated by impregnating erythritol into P-MXene/cellulose nanofiber (CNF) hybrid aerogels. The porous and interconnected 3D aerogels adequately support erythritol and resist liquid leakage during thermal storage. Differential scanning calorimetry (DSC) results showed that the eMPCMs based on P-MXene/CNF aerogels exhibited an extremely high thermal storage density (325.4-330.6 J/g) and excellent PCM loading capacity (up to 1929%). The introduction of P-MXene nanosheets into eMPCMs significantly increased the solar-thermal conversion and storage efficiency, solar-thermal-electricity conversion capacity, and thermal conductivity of the synthesized PCM composites. Moreover, the P-MXene/CNF hybrid aerogel-based PCM composites possessed excellent long-term thermal reliability and thermostability. Hence, the synthesized eMPCMs reveal tremendous potential for efficient solar-thermal storage fields.
开发具有优异储能容量和出色太阳能-热转换性能的自稳定相变材料(PCM)对于高效利用太阳能至关重要。在此,通过多巴胺的选择性蚀刻和自聚合,从TiAlC颗粒合成了具有优异光热效应和出色氧化稳定性的二维层状聚合多巴胺修饰的TiCT MXene纳米片(P-MXene)。然后,通过将赤藓糖醇浸渍到P-MXene/纤维素纳米纤维(CNF)混合气凝胶中,制备了新型生物质衍生的PCM复合材料eMPCM。多孔且相互连接的三维气凝胶充分支撑赤藓糖醇,并在蓄热过程中抵抗液体泄漏。差示扫描量热法(DSC)结果表明,基于P-MXene/CNF气凝胶的eMPCM表现出极高的储能密度(325.4-330.6 J/g)和出色的PCM负载能力(高达1929%)。将P-MXene纳米片引入eMPCM中显著提高了合成的PCM复合材料的太阳能-热转换和存储效率、太阳能-热电转换能力以及热导率。此外,基于P-MXene/CNF混合气凝胶的PCM复合材料具有出色的长期热可靠性和热稳定性。因此,合成的eMPCM在高效太阳能-热存储领域显示出巨大潜力。