Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, Italy.
IRCCS Neuromed, Via Atinense 18, Pozzilli, IS 86077, Italy.
Neuroimage. 2022 Jul 1;254:119119. doi: 10.1016/j.neuroimage.2022.119119. Epub 2022 Mar 20.
Neural oscillations can be modulated by non-invasive brain stimulation techniques, including transcranial alternating current stimulation (tACS). However, direct evidence of tACS effects at the cortical level in humans is still limited. In a tACS-electroencephalography co-registration setup, we investigated the ability of tACS to modulate cortical somatosensory information processing as assessed by somatosensory-evoked potentials (SEPs). To better elucidate the neural substrates of possible tACS effects we also recorded peripheral and spinal SEPs components, high-frequency oscillations (HFOs), and long-latency reflexes (LLRs). Finally, we studied whether changes were limited to the stimulation period or persisted thereafter. SEPs, HFOs, and LLRs were recorded during tACS applied at individual mu and beta frequencies and at the theta frequency over the primary somatosensory cortex (S1). Sham-tACS was used as a control condition. In a separate experiment, we assessed the time course of mu-tACS effects by recording SEPs before (T0), during (T1), and 1 min (T2) and 10 min (T3) after stimulation. Mu-tACS increased the amplitude of the N20 component of SEPs compared to both sham and theta-tACS. No differences were found between sham, beta-, and theta-tACS conditions. Also, peripheral and spinal SEPs, P25, HFOs, and LLRs did not change during tACS. Finally, mu-tACS-induced modulation of N20 amplitude specifically occurred during stimulation (T1) and vanished afterwards (i.e., at T2 and T3). Our findings suggest that TACS applied at the individual mu frequency is able to modulate early somatosensory information processing at the S1 level and the effect is limited to the stimulation period.
神经振荡可以通过非侵入性脑刺激技术进行调制,包括经颅交流电刺激(tACS)。然而,人类皮质水平上 tACS 效应的直接证据仍然有限。在 tACS-脑电图配准设置中,我们通过体感诱发电位(SEPs)研究了 tACS 调制皮质体感信息处理的能力。为了更好地阐明可能的 tACS 效应的神经基础,我们还记录了外周和脊髓 SEP 成分、高频振荡(HFOs)和长潜伏期反射(LLRs)。最后,我们研究了这些变化是否仅限于刺激期间,还是在此之后仍然存在。SEPs、HFOs 和 LLRs 是在个体 mu 和 beta 频率以及 theta 频率的 tACS 应用期间在初级体感皮层(S1)上记录的。假刺激 tACS 被用作对照条件。在一个单独的实验中,我们通过在刺激前(T0)、刺激期间(T1)以及刺激后 1 分钟(T2)和 10 分钟(T3)记录 SEPs 来评估 mu-tACS 效应的时间过程。与 sham 和 theta-tACS 相比,mu-tACS 增加了 SEP 的 N20 成分的振幅。在 sham、beta-和 theta-tACS 条件之间未发现差异。此外,外周和脊髓 SEPs、P25、HFOs 和 LLRs 在 tACS 期间没有变化。最后,mu-tACS 诱导的 N20 振幅调制仅在刺激期间(T1)发生,并在随后消失(即 T2 和 T3)。我们的研究结果表明,个体 mu 频率的 TACS 能够调制 S1 水平的早期体感信息处理,并且该效应仅限于刺激期间。