Suppr超能文献

二元掺杂剂偏析使基于赤铁矿的异质结构能够高效合成太阳能水。

Binary dopant segregation enables hematite-based heterostructures for highly efficient solar HO synthesis.

作者信息

Zhang Zhujun, Tsuchimochi Takashi, Ina Toshiaki, Kumabe Yoshitaka, Muto Shunsuke, Ohara Koji, Yamada Hiroki, Ten-No Seiichiro L, Tachikawa Takashi

机构信息

Molecular Photoscience Research Center, Kobe University, 1-1 Rokkodai-Cho, Nada-Ku, Kobe, 657-8501, Japan.

Graduate School of System Informatics, Kobe University, 1-1 Rokkodai-Cho, Nada-Ku, Kobe, 657-8501, Japan.

出版信息

Nat Commun. 2022 Mar 23;13(1):1499. doi: 10.1038/s41467-022-28944-y.

Abstract

Dopant segregation, frequently observed in ionic oxides, is useful for engineering materials and devices. However, due to the poor driving force for ion migration and/or the presence of substantial grain boundaries, dopants are mostly confined within a nanoscale region. Herein, we demonstrate that core-shell heterostructures are formed by oriented self-segregation using one-step thermal annealing of metal-doped hematite mesocrystals at relatively low temperatures in air. The sintering of highly ordered interfaces between the nanocrystal subunits inside the mesocrystal eliminates grain boundaries, leaving numerous oxygen vacancies in the bulk. This results in the efficient segregation of dopants (90%) on the external surface, which forms their oxide overlayers. The optimized photoanode based on hematite mesocrystals with oxide overlayers containing Sn and Ti dopants realises high activity (0.8 μmol min cm) and selectivity (~90%) for photoelectrochemical HO production, which provides a wide range of application for the proposed concept.

摘要

掺杂剂偏析现象在离子氧化物中经常被观察到,这对于工程材料和器件来说是有用的。然而,由于离子迁移的驱动力不足和/或存在大量晶界,掺杂剂大多被限制在纳米尺度区域内。在此,我们证明,通过在空气中相对较低温度下对金属掺杂赤铁矿介晶进行一步热退火,利用定向自偏析形成了核壳异质结构。介晶内部纳米晶亚单元之间高度有序界面的烧结消除了晶界,在主体中留下大量氧空位。这导致掺杂剂在外部表面高效偏析(约90%),形成其氧化物覆盖层。基于含有Sn和Ti掺杂剂的氧化物覆盖层的赤铁矿介晶优化后的光阳极,实现了对光电化学产H₂O₂的高活性(约0.8 μmol min⁻¹ cm⁻²)和高选择性(约90%),这为所提出的概念提供了广泛的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68d4/8943161/c9008cb1ba2c/41467_2022_28944_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验