Spellauge Maximilian, Doñate-Buendía Carlos, Barcikowski Stephan, Gökce Bilal, Huber Heinz P
Department of Applied Sciences and Mechatronics, Munich University of Applied Sciences, Lothstraße 34, 80335, Munich, Germany.
Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141, Essen, Germany.
Light Sci Appl. 2022 Mar 23;11(1):68. doi: 10.1038/s41377-022-00751-6.
Laser ablation in liquids is a highly interdisciplinary method at the intersection of physics and chemistry that offers the unique opportunity to generate surfactant-free and stable nanoparticles from virtually any material. Over the last decades, numerous experimental and computational studies aimed to reveal the transient processes governing laser ablation in liquids. Most experimental studies investigated the involved processes on timescales ranging from nanoseconds to microseconds. However, the ablation dynamics occurring on a sub-nanosecond timescale are of fundamental importance, as the conditions under which nanoparticles are generated are established within this timeframe. Furthermore, experimental investigations of the early timescales are required to test computational predictions. We visualize the complete spatiotemporal picosecond laser-induced ablation dynamics of gold immersed in air and water using ultrafast pump-probe microscopy. Transient reflectivity measurements reveal that the water confinement layer significantly influences the ablation dynamics on the entire investigated timescale from picoseconds to microseconds. The influence of the water confinement layer includes the electron injection and subsequent formation of a dense plasma on a picosecond timescale, the confinement of ablation products within hundreds of picoseconds, and the generation of a cavitation bubble on a nanosecond timescale. Moreover, we are able to locate the temporal appearance of secondary nanoparticles at about 600 ps after pulse impact. The results support computational predictions and provide valuable insight into the early-stage ablation dynamics governing laser ablation in liquids.
液体中的激光烧蚀是一种处于物理和化学交叉领域的高度跨学科方法,它提供了一个独特的机会,能够从几乎任何材料中生成无表面活性剂且稳定的纳米颗粒。在过去几十年中,众多实验和计算研究旨在揭示控制液体中激光烧蚀的瞬态过程。大多数实验研究在从纳秒到微秒的时间尺度上研究了所涉及的过程。然而,在亚纳秒时间尺度上发生的烧蚀动力学至关重要,因为纳米颗粒生成的条件是在这个时间范围内确立的。此外,需要对早期时间尺度进行实验研究来检验计算预测。我们使用超快泵浦 - 探测显微镜可视化了浸没在空气和水中的金的完整时空皮秒激光诱导烧蚀动力学。瞬态反射率测量表明,水限制层在从皮秒到微秒的整个研究时间尺度上对烧蚀动力学有显著影响。水限制层的影响包括在皮秒时间尺度上的电子注入以及随后致密等离子体的形成、在数百皮秒内对烧蚀产物的限制以及在纳秒时间尺度上空化泡的产生。此外,我们能够确定脉冲冲击后约600皮秒时二次纳米颗粒的出现时间。这些结果支持了计算预测,并为控制液体中激光烧蚀的早期烧蚀动力学提供了有价值的见解。