Suppr超能文献

内在突发使重复神经网络模型中的 Lévy 飞行运动学习成为可能。

Intrinsic bursts facilitate learning of Lévy flight movements in recurrent neural network models.

机构信息

Okinawa Institute of Science and Technology, Tancha 1919-1, Onna-son, Okinawa, 904-0495, Japan.

出版信息

Sci Rep. 2022 Mar 23;12(1):4951. doi: 10.1038/s41598-022-08953-z.

Abstract

Isolated spikes and bursts of spikes are thought to provide the two major modes of information coding by neurons. Bursts are known to be crucial for fundamental processes between neuron pairs, such as neuronal communications and synaptic plasticity. Neuronal bursting also has implications in neurodegenerative diseases and mental disorders. Despite these findings on the roles of bursts, whether and how bursts have an advantage over isolated spikes in the network-level computation remains elusive. Here, we demonstrate in a computational model that not isolated spikes, but intrinsic bursts can greatly facilitate learning of Lévy flight random walk trajectories by synchronizing burst onsets across a neural population. Lévy flight is a hallmark of optimal search strategies and appears in cognitive behaviors such as saccadic eye movements and memory retrieval. Our results suggest that bursting is crucial for sequence learning by recurrent neural networks when sequences comprise long-tailed distributed discrete jumps.

摘要

孤立的尖峰和尖峰爆发被认为提供了神经元的两种主要信息编码模式。爆发被认为对神经元对之间的基本过程至关重要,例如神经元通讯和突触可塑性。神经元爆发也与神经退行性疾病和精神障碍有关。尽管有这些关于爆发作用的发现,但爆发是否以及如何在网络级计算中优于孤立的尖峰仍然难以捉摸。在这里,我们在一个计算模型中证明,不是孤立的尖峰,而是内在的爆发,可以通过在神经群体中同步爆发的开始,极大地促进 Lévy 飞行随机游走轨迹的学习。 Lévy 飞行是最佳搜索策略的标志,出现在诸如扫视眼动和记忆检索等认知行为中。我们的结果表明,当序列包含长尾分布的离散跳跃时,爆发对于递归神经网络的序列学习至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9eb9/8943163/ad36704707c9/41598_2022_8953_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验