Suppr超能文献

不规则异步状态下前额叶持续和动态表征的神经轨迹回放的在线学习与记忆

Online Learning and Memory of Neural Trajectory Replays for Prefrontal Persistent and Dynamic Representations in the Irregular Asynchronous State.

作者信息

Sarazin Matthieu X B, Victor Julie, Medernach David, Naudé Jérémie, Delord Bruno

机构信息

Institut des Systèmes Intelligents et de Robotique, CNRS, Inserm, Sorbonne Université, Paris, France.

CEA Paris-Saclay, CNRS, NeuroSpin, Saclay, France.

出版信息

Front Neural Circuits. 2021 Jul 8;15:648538. doi: 10.3389/fncir.2021.648538. eCollection 2021.

Abstract

In the prefrontal cortex (PFC), higher-order cognitive functions and adaptive flexible behaviors rely on continuous dynamical sequences of spiking activity that constitute neural trajectories in the state space of activity. Neural trajectories subserve diverse representations, from explicit mappings in physical spaces to generalized mappings in the task space, and up to complex abstract transformations such as working memory, decision-making and behavioral planning. Computational models have separately assessed learning and replay of neural trajectories, often using unrealistic learning rules or decoupling simulations for learning from replay. Hence, the question remains open of how neural trajectories are learned, memorized and replayed online, with permanently acting biological plasticity rules. The asynchronous irregular regime characterizing cortical dynamics in awake conditions exerts a major source of disorder that may jeopardize plasticity and replay of locally ordered activity. Here, we show that a recurrent model of local PFC circuitry endowed with realistic synaptic spike timing-dependent plasticity and scaling processes can learn, memorize and replay large-size neural trajectories online under asynchronous irregular dynamics, at regular or fast (sped-up) timescale. Presented trajectories are quickly learned (within seconds) as synaptic engrams in the network, and the model is able to chunk overlapping trajectories presented separately. These trajectory engrams last long-term (dozen hours) and trajectory replays can be triggered over an hour. In turn, we show the conditions under which trajectory engrams and replays preserve asynchronous irregular dynamics in the network. Functionally, spiking activity during trajectory replays at regular timescale accounts for both dynamical coding with temporal tuning in individual neurons, persistent activity at the population level, and large levels of variability consistent with observed cognitive-related PFC dynamics. Together, these results offer a consistent theoretical framework accounting for how neural trajectories can be learned, memorized and replayed in PFC networks circuits to subserve flexible dynamic representations and adaptive behaviors.

摘要

在前额叶皮质(PFC)中,高阶认知功能和适应性灵活行为依赖于尖峰活动的连续动态序列,这些序列在活动状态空间中构成神经轨迹。神经轨迹支持多种表征,从物理空间中的显式映射到任务空间中的广义映射,再到诸如工作记忆、决策和行为规划等复杂的抽象转换。计算模型分别评估了神经轨迹的学习和重放,通常使用不切实际的学习规则或解耦模拟来将学习与重放分开。因此,神经轨迹如何通过永久起作用的生物可塑性规则进行在线学习、记忆和重放这一问题仍然悬而未决。清醒状态下皮质动力学的异步不规则状态是一个主要的紊乱源,可能会危及局部有序活动的可塑性和重放。在这里,我们表明,一个具有现实突触尖峰时间依赖性可塑性和缩放过程的局部PFC电路循环模型能够在异步不规则动力学下,在正常或快速(加速)时间尺度上在线学习、记忆和重放大尺寸神经轨迹。呈现的轨迹在数秒内作为网络中的突触记忆痕迹快速学习,并且该模型能够将单独呈现的重叠轨迹分块。这些轨迹记忆痕迹能长期存在(数十小时),轨迹重放可在一小时以上触发。反过来,我们展示了轨迹记忆痕迹和重放在网络中保持异步不规则动力学的条件。在功能上,正常时间尺度下轨迹重放期间的尖峰活动既包括单个神经元中具有时间调谐的动态编码、群体水平的持续活动,也包括与观察到的认知相关PFC动力学一致的大量变异性。总之,这些结果提供了一个一致的理论框架,解释了神经轨迹如何在PFC网络电路中被学习、记忆和重放,以支持灵活的动态表征和适应性行为。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/743d/8298038/4a6e37c121af/fncir-15-648538-g0001.jpg

相似文献

3
Working Memory and Decision-Making in a Frontoparietal Circuit Model.前额顶叶回路模型中的工作记忆与决策制定
J Neurosci. 2017 Dec 13;37(50):12167-12186. doi: 10.1523/JNEUROSCI.0343-17.2017. Epub 2017 Nov 7.

本文引用的文献

6
Cortical computations via metastable activity.皮层计算通过亚稳态活动。
Curr Opin Neurobiol. 2019 Oct;58:37-45. doi: 10.1016/j.conb.2019.06.007. Epub 2019 Jul 18.
9
Activity of Prefrontal Neurons Predict Future Choices during Gambling.前额叶神经元的活动可预测赌博中的未来选择。
Neuron. 2019 Jan 2;101(1):152-164.e7. doi: 10.1016/j.neuron.2018.10.050. Epub 2018 Dec 6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验