Suppr超能文献

细胞内稳态固有可塑性对生物递归神经网络动力学和计算特性的影响。

Effects of cellular homeostatic intrinsic plasticity on dynamical and computational properties of biological recurrent neural networks.

机构信息

UMR CNRS 7102, Université Pierre et Marie Curie, 75005 Paris, France, NeuroMathComp Project Team, INRIA, 06902 Sophia Antipolis Cedex 2, France, BEAGLE, INRIA Rhône-Alpes, Université de Lyon, LIRIS, UMR5205, 69100 Villeurbanne, France, and Institut des Systèmes Intelligents et de Robotique, UMR CNRS 7222, Université Pierre et Marie Curie, 75005 Paris, France.

出版信息

J Neurosci. 2013 Sep 18;33(38):15032-43. doi: 10.1523/JNEUROSCI.0870-13.2013.

Abstract

Homeostatic intrinsic plasticity (HIP) is a ubiquitous cellular mechanism regulating neuronal activity, cardinal for the proper functioning of nervous systems. In invertebrates, HIP is critical for orchestrating stereotyped activity patterns. The functional impact of HIP remains more obscure in vertebrate networks, where higher order cognitive processes rely on complex neural dynamics. The hypothesis has emerged that HIP might control the complexity of activity dynamics in recurrent networks, with important computational consequences. However, conflicting results about the causal relationships between cellular HIP, network dynamics, and computational performance have arisen from machine-learning studies. Here, we assess how cellular HIP effects translate into collective dynamics and computational properties in biological recurrent networks. We develop a realistic multiscale model including a generic HIP rule regulating the neuronal threshold with actual molecular signaling pathways kinetics, Dale's principle, sparse connectivity, synaptic balance, and Hebbian synaptic plasticity (SP). Dynamic mean-field analysis and simulations unravel that HIP sets a working point at which inputs are transduced by large derivative ranges of the transfer function. This cellular mechanism ensures increased network dynamics complexity, robust balance with SP at the edge of chaos, and improved input separability. Although critically dependent upon balanced excitatory and inhibitory drives, these effects display striking robustness to changes in network architecture, learning rates, and input features. Thus, the mechanism we unveil might represent a ubiquitous cellular basis for complex dynamics in neural networks. Understanding this robustness is an important challenge to unraveling principles underlying self-organization around criticality in biological recurrent neural networks.

摘要

内稳态固有可塑性 (HIP) 是一种普遍存在的细胞机制,调节神经元活动,对神经系统的正常功能至关重要。在无脊椎动物中,HIP 对于协调刻板的活动模式至关重要。在脊椎动物网络中,HIP 的功能影响仍然更加模糊,其中更高阶的认知过程依赖于复杂的神经动力学。已经出现了这样一种假设,即 HIP 可能控制着递归网络中活动动力学的复杂性,具有重要的计算后果。然而,来自机器学习研究的结果相互矛盾,这些结果涉及细胞 HIP、网络动力学和计算性能之间的因果关系。在这里,我们评估细胞 HIP 效应如何转化为生物递归网络中的集体动力学和计算特性。我们开发了一个现实的多尺度模型,该模型包括一个通用的 HIP 规则,该规则通过实际的分子信号通路动力学、戴尔原则、稀疏连接、突触平衡和赫布氏突触可塑性 (SP) 来调节神经元的阈值。动态平均场分析和模拟表明,HIP 设定了一个工作点,在该点输入通过传递函数的大导数范围进行转换。这种细胞机制确保了网络动力学复杂性的增加,在混沌边缘与 SP 的稳健平衡,以及输入可分离性的提高。尽管这一机制严重依赖于平衡的兴奋性和抑制性驱动,但这些效应显示出对网络结构、学习率和输入特征变化的惊人鲁棒性。因此,我们揭示的机制可能代表了神经网络中复杂动力学的普遍细胞基础。理解这种鲁棒性是揭示生物递归神经网络中围绕临界点的自组织原理的一个重要挑战。

相似文献

6
Homeostatic scaling of excitability in recurrent neural networks.递归神经网络中兴奋性的稳态缩放。
PLoS Comput Biol. 2012;8(5):e1002494. doi: 10.1371/journal.pcbi.1002494. Epub 2012 May 3.

引用本文的文献

本文引用的文献

1
Homeostatic scaling of excitability in recurrent neural networks.递归神经网络中兴奋性的稳态缩放。
PLoS Comput Biol. 2012;8(5):e1002494. doi: 10.1371/journal.pcbi.1002494. Epub 2012 May 3.
2
A theory of rate coding control by intrinsic plasticity effects.一种基于内在可塑性效应的率码控制理论。
PLoS Comput Biol. 2012 Jan;8(1):e1002349. doi: 10.1371/journal.pcbi.1002349. Epub 2012 Jan 19.
3
Intrinsic adaptation in autonomous recurrent neural networks.自主递归神经网络中的内在适应。
Neural Comput. 2012 Feb;24(2):523-40. doi: 10.1162/NECO_a_00232. Epub 2011 Nov 17.
7
SORN: a self-organizing recurrent neural network.SORN:一种自组织递归神经网络。
Front Comput Neurosci. 2009 Oct 30;3:23. doi: 10.3389/neuro.10.023.2009. eCollection 2009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验