Wang Sanmei, Xin Yue, Yuan Jinyun, Wang Liangbing, Zhang Wenhua
State Key Laboratory for Powder Metallurgy, School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, P. R. China.
Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Centre of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
Nanoscale. 2022 Apr 7;14(14):5447-5453. doi: 10.1039/d1nr08466f.
Direct conversion of methane to methanol (DMTM) under mild conditions is one of the most attractive and challenging processes in catalysis. By using density functional theory calculations, we systematically investigate the catalytic performance of Cu single atoms supported on O-doped BN in different coordination environments as a DMTM catalyst. Computations demonstrate that Cu coordinated with one O atom and two N atoms on O-doped BN (Cu/ON-BN) exhibited the highest catalytic activity for DMTM at room temperature with quite a low rate-determining step energy barrier of 0.46 eV. The moderate adsorption of *O atoms, selective stabilization of CH species, and easy desorption of CHOH are responsible for the unique activity of Cu/ON-BN for DMTM. In addition, the adsorption free energy of *O atoms produced by the dissociation of O-donor molecules is a suitable descriptor for predicting the catalytic performance of materials and accelerating the discovery of catalysts for DMTM. This work opens new avenues to develop highly efficient catalysts for DMTM.
在温和条件下将甲烷直接转化为甲醇(DMTM)是催化领域中最具吸引力和挑战性的过程之一。通过密度泛函理论计算,我们系统地研究了负载在O掺杂BN上的不同配位环境下的Cu单原子作为DMTM催化剂的催化性能。计算表明,在O掺杂BN上与一个O原子和两个N原子配位的Cu(Cu/ON-BN)在室温下对DMTM表现出最高的催化活性,其速率决定步骤的能垒相当低,为0.46 eV。O原子的适度吸附、CH物种的选择性稳定以及CHOH的易于脱附是Cu/ON-BN对DMTM具有独特活性的原因。此外,由给O分子解离产生的O原子的吸附自由能是预测材料催化性能和加速发现DMTM催化剂的合适描述符。这项工作为开发用于DMTM的高效催化剂开辟了新途径。