Shen Wanyu, Gao Xiaoping, Liu Qichen, Li Peng, Huang Rui, Tan Yi, Wang Zihan, Zhang Yilin, Zhao Fan, Wang Xin, Ji Shiyu, Zheng Xusheng, Zhang Yu, Wu Yuen
State Key Laboratory of Precision and Intelligent Chemistry/School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China.
Deep Space Exploration Laboratory, University of Science and Technology of China, Hefei, China.
Nat Commun. 2025 Aug 26;16(1):7943. doi: 10.1038/s41467-025-63274-9.
To address the escalating challenge of atmospheric CO emissions, this study proposes a self-healing Cu single atom (SA) catalyst design. By partially cleaving Cu-N bonds via hydrogen evolution reaction (HER), coordinatively unsaturated Cu sites form and spontaneously bond with adjacent ZrO clusters which are strategically positioned near the Cu SA, creating a hybrid Cu-N/O structure with enhanced performance. In situ Raman and X-ray absorption fine structure (XAFS) measurements confirm the dynamic reconstruction of coordination environment from CuN to CuNO under electrochemical conditions. The reconstructed CuNO achieve observed performance for CO-to-CH conversion, reaching a Faradaic efficiency of 87.06 ± 3.22% at -500 mA cm and 80.21 ± 1.01% at -1000 mA cm, which are threefold and tenfold higher than those of pristine CuN. Furthermore, a 25-h stability test with 500 mA cm current density in a membrane electrode assembly (MEA) electrolyzer demonstrates minimal activity decay (< 3%). Density functional theory (DFT) calculations demonstrate that self-healing mechanisms optimize intermediate adsorption and electron distribution. This strategy enables efficient muti-electron transfer processes under industrial conditions, working to improve the stability of single-atom catalysts and develop scalable catalytic systems.
为应对大气中一氧化碳排放不断升级的挑战,本研究提出了一种自修复铜单原子(SA)催化剂设计。通过析氢反应(HER)部分裂解Cu-N键,形成配位不饱和的Cu位点,并与位于Cu单原子附近的相邻ZrO簇自发结合,形成具有增强性能的混合Cu-N/O结构。原位拉曼光谱和X射线吸收精细结构(XAFS)测量证实了在电化学条件下配位环境从CuN到CuNO的动态重构。重构后的CuNO在CO转化为CH反应中表现出了优异的性能,在-500 mA cm时法拉第效率达到87.06 ± 3.22%,在-1000 mA cm时达到80.21 ± 1.01%,分别是原始CuN的三倍和十倍。此外,在膜电极组件(MEA)电解槽中以500 mA cm电流密度进行的25小时稳定性测试表明活性衰减极小(< 3%)。密度泛函理论(DFT)计算表明,自修复机制优化了中间体吸附和电子分布。该策略能够在工业条件下实现高效的多电子转移过程,致力于提高单原子催化剂的稳定性并开发可扩展的催化系统。