Suppr超能文献

自动化提取疼痛症状:一种使用电子健康记录的自然语言方法。

Automated Extraction of Pain Symptoms: A Natural Language Approach using Electronic Health Records.

机构信息

University of Connecticut School of Medicine, Farmington, CT.

University of Connecticut School of Medicine, Farmington, CT; Institute of Living at Hartford Hospital, Hartford, CT.

出版信息

Pain Physician. 2022 Mar;25(2):E245-E254.

Abstract

BACKGROUND

Pain costs more than $600 billion annually and affects more than 100 million Americans, but is still a poorly understood problem and one for which there is very often limited effective treatment. Electronic health records (EHRs) are the only databases with a high volume of granular pain information that allows for documentation of detailed clinical notes on a patient's subjective experience.

OBJECTIVES

This study applied natural language processing (NLP) technology to an EHR dataset as part of a pilot study to capture pain information from clinical notes and prove its feasibility as an efficient method.

STUDY DESIGN

Retrospective study.

SETTING

All data were from UConn Health John Dempsey Hospital (JDH) in Farmington, CT.

METHODS

The JDH EHR dataset contains 611,355 clinical narratives from 359,854 patients from diverse demographic backgrounds from 2010 through 2019. These data were processed through a customized NLP pipeline. A training set of 100 notes was annotated based on focus group-generated ontology and used to generate and evaluate an NLP model that was later tested on the remaining notes. Validation of the model was evaluated externally and performance was analyzed.

RESULTS

The model identified back pain as the most common location of experienced pain with 40,369 term frequencies. Patients most commonly experienced decreased mobility with their pain with 7,375 term frequencies. Pain was most commonly found to be radiating with 26,967 term frequencies and patients most commonly rated their pain as 8/10 with 2,375 term frequencies. All parameters studied had statistical F-scores greater than 0.85.

LIMITATIONS

A single-center, pilot study subject to reporting bias, recording bias, and missing patient data.

CONCLUSIONS

Our customized NLP model demonstrated good and successful performance in extracting granular pain information from clinical notes in electronic health records.

摘要

背景

疼痛每年造成的损失超过 6000 亿美元,影响了超过 1 亿美国人,但它仍然是一个尚未被充分理解的问题,而且通常只有非常有限的有效治疗方法。电子健康记录 (EHR) 是唯一具有大量细粒度疼痛信息的数据库,可用于记录患者主观体验的详细临床记录。

目的

本研究将自然语言处理 (NLP) 技术应用于 EHR 数据集,作为一项试点研究的一部分,旨在从临床记录中获取疼痛信息,并证明其作为一种高效方法的可行性。

研究设计

回顾性研究。

设置

所有数据均来自康涅狄格州法明顿的 UConn Health John Dempsey 医院 (JDH)。

方法

JDH EHR 数据集包含了 2010 年至 2019 年间来自不同人口统计学背景的 359854 名患者的 611355 份临床记录。这些数据通过一个定制的 NLP 管道进行处理。基于焦点小组生成的本体,对 100 份注释的训练集进行注释,用于生成和评估 NLP 模型,然后该模型在剩余的记录上进行测试。模型的验证在外部进行评估,并分析其性能。

结果

该模型确定背部疼痛是最常见的疼痛部位,有 40369 个术语频率。患者最常因疼痛而降低活动能力,有 7375 个术语频率。疼痛最常见的放射方式是放射,有 26967 个术语频率,患者最常将疼痛评为 8/10,有 2375 个术语频率。所有研究的参数的 F 分数都大于 0.85。

局限性

这是一项单中心的试点研究,受到报告偏见、记录偏见和患者数据缺失的影响。

结论

我们的定制 NLP 模型在从电子健康记录中的临床记录中提取细粒度疼痛信息方面表现出良好和成功的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验