Rhodes Charlotte G, Loaiza Jose R, Romero Luis Mario, Gutiérrez Alvarado José Manuel, Delgado Gabriela, Rojas Salas Obdulio, Ramírez Rojas Melissa, Aguilar-Avendaño Carlos, Maynes Ezequías, Valerín Cordero José A, Soto Mora Alonso, Rigg Chystrie A, Zardkoohi Aryana, Prado Monica, Friberg Mariel D, Bergmann Luke R, Marín Rodríguez Rodrigo, Hamer Gabriel L, Chaves Luis Fernando
Department of Entomology, Texas A&M University, College Station, TX 77843, USA.
Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, Ciudad de Panama Apartado Postal 0816-02593, Panama.
Insects. 2022 Feb 22;13(3):221. doi: 10.3390/insects13030221.
In the absence of entomological information, tools for predicting spp. presence can help evaluate the entomological risk of malaria transmission. Here, we illustrate how species distribution models (SDM) could quantify potential dominant vector species presence in malaria elimination settings. We fitted a 250 m resolution ensemble SDM for Wiedemann. The ensemble SDM included predictions based on seven different algorithms, 110 occurrence records and 70 model projections. SDM covariates included nine environmental variables that were selected based on their importance from an original set of 28 layers that included remotely and spatially interpolated locally measured variables for the land surface of Costa Rica. Goodness of fit for the ensemble SDM was very high, with a minimum AUC of 0.79. We used the resulting ensemble SDM to evaluate differences in habitat suitability (HS) between commercial plantations and surrounding landscapes, finding a higher HS in pineapple and oil palm plantations, suggestive of presence, than in surrounding landscapes. The ensemble SDM suggested a low HS for at the presumed epicenter of malaria transmission during 2018-2019 in Costa Rica, yet this vector was likely present at the two main towns also affected by the epidemic. Our results illustrate how ensemble SDMs in malaria elimination settings can provide information that could help to improve vector surveillance and control.
在缺乏昆虫学信息的情况下,预测疟蚊种类存在的工具有助于评估疟疾传播的昆虫学风险。在此,我们阐述了物种分布模型(SDM)如何能够量化疟疾消除环境中潜在优势病媒种类的存在情况。我们为维德曼疟蚊拟合了一个分辨率为250米的集成SDM。该集成SDM包括基于七种不同算法、110个出现记录和70个模型预测的结果。SDM协变量包括九个环境变量,这些变量是从最初的28个图层中根据其重要性挑选出来的,其中包括哥斯达黎加陆地表面的远程和空间插值局部测量变量。集成SDM的拟合优度非常高,最小AUC为0.79。我们使用所得的集成SDM来评估商业种植园与周边景观之间栖息地适宜性(HS)的差异,发现菠萝和油棕种植园的HS高于周边景观,这表明存在维德曼疟蚊。集成SDM表明,在2018 - 2019年哥斯达黎加疟疾传播的假定震中,维德曼疟蚊的HS较低,但这种病媒可能也存在于受疫情影响的两个主要城镇。我们的结果说明了在疟疾消除环境中集成SDM如何能够提供有助于改善病媒监测和控制的信息。