Suppr超能文献

疾病生态学中的物种分布建模:巴西血吸虫病中间宿主螺类的多尺度案例研究

Species distribution modeling for disease ecology: A multi-scale case study for schistosomiasis host snails in Brazil.

作者信息

Singleton Alyson L, Glidden Caroline K, Chamberlin Andrew J, Tuan Roseli, Palasio Raquel G S, Pinter Adriano, Caldeira Roberta L, Mendonça Cristiane L F, Carvalho Omar S, Monteiro Miguel V, Athni Tejas S, Sokolow Susanne H, Mordecai Erin A, De Leo Giulio A

机构信息

Emmett Interdisciplinary Program in Environment and Resources, Stanford University, Stanford, California, United States of America.

Department of Biology, Stanford University, Stanford, California, United States of America.

出版信息

PLOS Glob Public Health. 2024 Aug 2;4(8):e0002224. doi: 10.1371/journal.pgph.0002224. eCollection 2024.

Abstract

Species distribution models (SDMs) are increasingly popular tools for profiling disease risk in ecology, particularly for infectious diseases of public health importance that include an obligate non-human host in their transmission cycle. SDMs can create high-resolution maps of host distribution across geographical scales, reflecting baseline risk of disease. However, as SDM computational methods have rapidly expanded, there are many outstanding methodological questions. Here we address key questions about SDM application, using schistosomiasis risk in Brazil as a case study. Schistosomiasis is transmitted to humans through contact with the free-living infectious stage of Schistosoma spp. parasites released from freshwater snails, the parasite's obligate intermediate hosts. In this study, we compared snail SDM performance across machine learning (ML) approaches (MaxEnt, Random Forest, and Boosted Regression Trees), geographic extents (national, regional, and state), types of presence data (expert-collected and publicly-available), and snail species (Biomphalaria glabrata, B. straminea, and B. tenagophila). We used high-resolution (1km) climate, hydrology, land-use/land-cover (LULC), and soil property data to describe the snails' ecological niche and evaluated models on multiple criteria. Although all ML approaches produced comparable spatially cross-validated performance metrics, their suitability maps showed major qualitative differences that required validation based on local expert knowledge. Additionally, our findings revealed varying importance of LULC and bioclimatic variables for different snail species at different spatial scales. Finally, we found that models using publicly-available data predicted snail distribution with comparable AUC values to models using expert-collected data. This work serves as an instructional guide to SDM methods that can be applied to a range of vector-borne and zoonotic diseases. In addition, it advances our understanding of the relevant environment and bioclimatic determinants of schistosomiasis risk in Brazil.

摘要

物种分布模型(SDMs)在生态学中已成为用于描绘疾病风险的越来越受欢迎的工具,特别是对于具有公共卫生重要性的传染病,这些传染病在其传播周期中包括专性非人宿主。物种分布模型可以创建跨地理尺度的宿主分布高分辨率地图,反映疾病的基线风险。然而,随着物种分布模型计算方法的迅速扩展,存在许多悬而未决的方法学问题。在这里,我们以巴西的血吸虫病风险为例,解决有关物种分布模型应用的关键问题。血吸虫病是通过接触淡水蜗牛释放的血吸虫属寄生虫的自由生活感染阶段传播给人类的,淡水蜗牛是该寄生虫的专性中间宿主。在本研究中,我们比较了机器学习(ML)方法(最大熵模型、随机森林和增强回归树)、地理范围(国家、区域和州)、存在数据类型(专家收集和公开可用)以及蜗牛物种(光滑双脐螺、稻草双脐螺和嗜土双脐螺)的蜗牛物种分布模型性能。我们使用高分辨率(1公里)的气候、水文、土地利用/土地覆盖(LULC)和土壤属性数据来描述蜗牛的生态位,并根据多个标准评估模型。尽管所有机器学习方法都产生了可比的空间交叉验证性能指标,但它们的适宜性地图显示出主要的定性差异,需要根据当地专家知识进行验证。此外,我们的研究结果揭示了土地利用/土地覆盖和生物气候变量在不同空间尺度上对不同蜗牛物种的重要性各不相同。最后,我们发现使用公开可用数据的模型预测蜗牛分布的曲线下面积(AUC)值与使用专家收集数据的模型相当。这项工作为可应用于一系列媒介传播和人畜共患疾病的物种分布模型方法提供了指导。此外,它还增进了我们对巴西血吸虫病风险的相关环境和生物气候决定因素的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5168/11296653/d983a181d64d/pgph.0002224.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验