Suppr超能文献

基于CT的脓胸预测和结果评估对影像人工智能研究基线生成的思考

Considerations on Baseline Generation for Imaging AI Studies Illustrated on the CT-Based Prediction of Empyema and Outcome Assessment.

作者信息

Sexauer Raphael, Stieltjes Bram, Bremerich Jens, D'Antonoli Tugba Akinci, Schmidt Noemi

机构信息

Department of Radiology and Nuclear Medicine, University Hospital Basel, 4031 Basel, Switzerland.

Department of Informatics, Division of Research and Analytical Services, University Hospital Basel, 4031 Basel, Switzerland.

出版信息

J Imaging. 2022 Feb 22;8(3):50. doi: 10.3390/jimaging8030050.

Abstract

For AI-based classification tasks in computed tomography (CT), a reference standard for evaluating the clinical diagnostic accuracy of individual classes is essential. To enable the implementation of an AI tool in clinical practice, the raw data should be drawn from clinical routine data using state-of-the-art scanners, evaluated in a blinded manner and verified with a reference test. Three hundred and thirty-five consecutive CTs, performed between 1 January 2016 and 1 January 2021 with reported pleural effusion and pathology reports from thoracocentesis or biopsy within 7 days of the CT were retrospectively included. Two radiologists (4 and 10 PGY) blindly assessed the chest CTs for pleural CT features. If needed, consensus was achieved using an experienced radiologist's opinion (29 PGY). In addition, diagnoses were extracted from written radiological reports. We analyzed these findings for a possible correlation with the following patient outcomes: mortality and median hospital stay. For AI prediction, we used an approach consisting of nnU-Net segmentation, PyRadiomics features and a random forest model. Specificity and sensitivity for CT-based detection of empyema ( = 81 of = 335 patients) were 90.94 (95%-CI: 86.55-94.05) and 72.84 (95%-CI: 61.63-81.85%) in all effusions, with moderate to almost perfect interrater agreement for all pleural findings associated with empyema (Cohen's kappa = 0.41-0.82). Highest accuracies were found for pleural enhancement or thickening with 87.02% and 81.49%, respectively. For empyema prediction, AI achieved a specificity and sensitivity of 74.41% (95% CI: 68.50-79.57) and 77.78% (95% CI: 66.91-85.96), respectively. Empyema was associated with a longer hospital stay (median = 20 versus 14 days), and findings consistent with pleural carcinomatosis impacted mortality.

摘要

对于计算机断层扫描(CT)中基于人工智能的分类任务,评估各个类别的临床诊断准确性的参考标准至关重要。为了使人工智能工具能够在临床实践中得以应用,原始数据应取自使用最先进扫描仪的临床常规数据,采用盲法进行评估,并通过参考测试进行验证。回顾性纳入了2016年1月1日至2021年1月1日期间连续进行的335例CT检查,这些检查报告有胸腔积液,且在CT检查后7天内有胸腔穿刺或活检的病理报告。两名放射科医生(分别为4年制和10年制住院医师)对胸部CT的胸膜CT特征进行盲法评估。如有需要,采用一位经验丰富的放射科医生(29年制住院医师)的意见达成共识。此外,从书面放射学报告中提取诊断结果。我们分析了这些发现与以下患者预后的可能相关性:死亡率和中位住院时间。对于人工智能预测,我们采用了一种由nnU-Net分割、PyRadiomics特征和随机森林模型组成的方法。在所有胸腔积液中,基于CT检测脓胸(n = 335例患者中的81例)的特异性和敏感性分别为90.94(95%置信区间:86.55 - 94.05)和72.84(95%置信区间:61.63 - 81.85%),对于与脓胸相关的所有胸膜发现,评分者间一致性从中度到几乎完美(Cohen's kappa = 0.41 - 0.82)。胸膜强化或增厚的准确率最高,分别为87.02%和81.49%。对于脓胸预测,人工智能的特异性和敏感性分别为74.41%(95%置信区间:68.50 - 79.57)和77.78%(95%置信区间:66.91 - 85.96)。脓胸与更长的住院时间相关(中位住院时间 = 20天对14天),与胸膜癌病一致的发现影响死亡率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bd8/8954780/e0be7d2caa1f/jimaging-08-00050-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验