Suppr超能文献

深度学习预测肺癌,以识别良性肺结节。

Lung cancer prediction by Deep Learning to identify benign lung nodules.

机构信息

University of Groningen, University Medical Center Groningen Groningen, Department of Epidemiology, Groningen, The Netherlands; Department of Pulmonary Medicine, Medisch Spectrum Twente, Enschede, The Netherlands.

University of Groningen, University Medical Center Groningen Groningen, Department of Radiation Oncology, Groningen, The Netherlands.

出版信息

Lung Cancer. 2021 Apr;154:1-4. doi: 10.1016/j.lungcan.2021.01.027. Epub 2021 Jan 31.

Abstract

INTRODUCTION

Deep Learning has been proposed as promising tool to classify malignant nodules. Our aim was to retrospectively validate our Lung Cancer Prediction Convolutional Neural Network (LCP-CNN), which was trained on US screening data, on an independent dataset of indeterminate nodules in an European multicentre trial, to rule out benign nodules maintaining a high lung cancer sensitivity.

METHODS

The LCP-CNN has been trained to generate a malignancy score for each nodule using CT data from the U.S. National Lung Screening Trial (NLST), and validated on CT scans containing 2106 nodules (205 lung cancers) detected in patients from from the Early Lung Cancer Diagnosis Using Artificial Intelligence and Big Data (LUCINDA) study, recruited from three tertiary referral centers in the UK, Germany and Netherlands. We pre-defined a benign nodule rule-out test, to identify benign nodules whilst maintaining a high sensitivity, by calculating thresholds on the malignancy score that achieve at least 99 % sensitivity on the NLST data. Overall performance per validation site was evaluated using Area-Under-the-ROC-Curve analysis (AUC).

RESULTS

The overall AUC across the European centers was 94.5 % (95 %CI 92.6-96.1). With a high sensitivity of 99.0 %, malignancy could be ruled out in 22.1 % of the nodules, enabling 18.5 % of the patients to avoid follow-up scans. The two false-negative results both represented small typical carcinoids.

CONCLUSION

The LCP-CNN, trained on participants with lung nodules from the US NLST dataset, showed excellent performance on identification of benign lung nodules in a multi-center external dataset, ruling out malignancy with high accuracy in about one fifth of the patients with 5-15 mm nodules.

摘要

简介

深度学习已被提出作为一种有前途的工具来对恶性结节进行分类。我们的目的是回顾性地验证我们的基于美国筛查数据训练的肺癌预测卷积神经网络(LCP-CNN),该网络在一个欧洲多中心试验中对不确定结节的独立数据集进行验证,以排除良性结节并保持高肺癌敏感性。

方法

LCP-CNN 使用来自美国国家肺癌筛查试验(NLST)的 CT 数据来生成每个结节的恶性评分,并在来自英国、德国和荷兰的三个三级转诊中心招募的早期肺癌诊断使用人工智能和大数据(LUCINDA)研究中对包含 2106 个结节(205 个肺癌)的 CT 扫描进行验证。我们预先定义了一个良性结节排除测试,通过在 NLST 数据上计算至少 99%敏感性的恶性评分阈值,以保持高敏感性的同时识别良性结节。使用 ROC 曲线下面积分析(AUC)评估每个验证站点的整体性能。

结果

整个欧洲中心的总体 AUC 为 94.5%(95%CI 92.6-96.1)。敏感性为 99.0%,可排除 22.1%的结节恶性,使 18.5%的患者避免随访扫描。两个假阴性结果均代表小典型类癌。

结论

基于来自美国 NLST 数据集的肺结节参与者进行训练的 LCP-CNN 在多中心外部数据集上显示出了识别良性肺结节的出色性能,以高精度排除恶性肿瘤,在 5-15mm 结节的约五分之一患者中实现了约五分之一的患者。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验