Suppr超能文献

自动化评估 p16/Ki-67 双染细胞学作为男性性活跃人群中 HIV 感染者肛门癌前病变的生物标志物。

Automated Evaluation of p16/Ki-67 Dual-Stain Cytology as a Biomarker for Detection of Anal Precancer in Men Who Have Sex With Men and Are Living With Human Immunodeficiency Virus.

机构信息

Division of Cancer Epidemiology & Genetics, National Cancer Institute, Rockville, Maryland, USA.

Steinbeis Transfer Center for Medical Systems Biology, Heidelberg, Germany.

出版信息

Clin Infect Dis. 2022 Oct 29;75(9):1565-1572. doi: 10.1093/cid/ciac211.

Abstract

BACKGROUND

Human papillomavirus-related biomarkers such as p16/Ki-67 "dual-stain" (DS) cytology have shown promising clinical performance for anal cancer screening. Here, we assessed the performance of automated evaluation of DS cytology (automated DS) to detect anal precancer in men who have sex with men (MSM) and are living with human immunodeficiency virus (HIV).

METHODS

We conducted a cross-sectional analysis of 320 MSM with HIV undergoing anal cancer screening and high-resolution anoscopy (HRA) in 2009-2010. We evaluated the performance of automated DS based on a deep-learning classifier compared to manual evaluation of DS cytology (manual DS) to detect anal intraepithelial neoplasia grade 2 or 3 (AIN2+) and grade 3 (AIN3). We evaluated different DS-positive cell thresholds quantified by the automated approach and modeled performance compared with other screening strategies in a hypothetical population of MSM with HIV.

RESULTS

Compared with manual DS, automated DS had significantly higher specificity (50.9% vs 42.2%; P < .001) and similar sensitivity (93.2% vs 92.1%) for detection of AIN2+. Human papillomavirus testing with automated DS triage was significantly more specific than automated DS alone (56.5% vs 50.9%; P < .001), with the same sensitivity (93.2%). In a modeled analysis assuming a 20% AIN2+ prevalence, automated DS detected more precancers than manual DS and anal cytology (186, 184, and 162, respectively) and had the lowest HRA referral rate per AIN2+ case detected (3.1, 3.5, and 3.3, respectively).

CONCLUSIONS

Compared with manual DS, automated DS detects the same number of precancers, with a lower HRA referral rate.

摘要

背景

人乳头瘤病毒相关生物标志物,如 p16/Ki-67“双染”(DS)细胞学,已显示出在肛门癌筛查方面具有良好的临床性能。在这里,我们评估了自动化评估 DS 细胞学(自动 DS)在与人类免疫缺陷病毒(HIV)共存的男男性行为者(MSM)中检测肛门癌前病变的性能。

方法

我们对 2009 年至 2010 年间接受肛门癌筛查和高分辨率肛门镜检查(HRA)的 320 名 HIV 阳性 MSM 进行了横断面分析。我们评估了基于深度学习分类器的自动 DS 与手动 DS 细胞学评估(手动 DS)相比,检测高级别上皮内瘤变(AIN2+)和高级别上皮内瘤变(AIN3)的性能。我们评估了自动方法量化的不同 DS 阳性细胞阈值,并在 HIV 阳性 MSM 的假设人群中对模型性能与其他筛查策略进行了比较。

结果

与手动 DS 相比,自动 DS 检测 AIN2+的特异性(50.9%对 42.2%;P<.001)显著提高,敏感性(93.2%对 92.1%)相似。自动 DS 与 HPV 检测联合进行分诊,特异性显著高于自动 DS 单独检测(56.5%对 50.9%;P<.001),敏感性相同(93.2%)。在一项假设 AIN2+患病率为 20%的模型分析中,自动 DS 检测到的癌前病变多于手动 DS 和肛门细胞学(分别为 186、184 和 162),且每例 AIN2+检测到的 HRA 转诊率最低(分别为 3.1、3.5 和 3.3)。

结论

与手动 DS 相比,自动 DS 检测到相同数量的癌前病变,且 HRA 转诊率较低。

相似文献

引用本文的文献

7
Anal Cancer and Anal Cancer Screening.肛门癌与肛门癌筛查。
Clin Obstet Gynecol. 2023 Sep 1;66(3):516-533. doi: 10.1097/GRF.0000000000000789. Epub 2023 Jul 13.

本文引用的文献

9
Cancer statistics, 2018.癌症统计数据,2018 年。
CA Cancer J Clin. 2018 Jan;68(1):7-30. doi: 10.3322/caac.21442. Epub 2018 Jan 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验