Suppr超能文献

由于流感和 COVID-19 疫苗接种行为的相关性,导致 2019 年冠状病毒病(COVID-19)和流感疫苗效力测试阴性设计中的混杂偏倚的影响。

Effects of Confounding Bias in Coronavirus Disease 2019 (COVID-19) and Influenza Vaccine Effectiveness Test-Negative Designs Due to Correlated Influenza and COVID-19 Vaccination Behaviors.

机构信息

Department of Population Health Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, USA.

Precision Analytics, Montreal, Quebec, Canada.

出版信息

Clin Infect Dis. 2022 Aug 24;75(1):e564-e571. doi: 10.1093/cid/ciac234.

Abstract

BACKGROUND

The test-negative design is commonly used to estimate influenza and coronavirus disease 2019 (COVID-19) vaccine effectiveness (VE). In these studies, correlated COVID-19 and influenza vaccine behaviors may introduce a confounding bias where controls are included with the other vaccine-preventable acute respiratory illness (ARI). We quantified the impact of this bias on VE estimates in studies where this bias is not addressed.

METHODS

We simulated study populations under varying vaccination probabilities, COVID-19 VE, influenza VE, and proportions of controls included with the other vaccine-preventable ARI. Mean bias was calculated as the difference between estimated and true VE. Absolute mean bias in VE estimates was classified as low (<10%), moderate (10% to <20%), and high (≥20%).

RESULTS

Where vaccination probabilities are positively correlated, COVID-19 and influenza VE test-negative studies with influenza and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) ARI controls, respectively, underestimate VE. For COVID-19 VE studies, mean bias was low for all scenarios where influenza represented ≤25% of controls. For influenza VE studies, mean bias was low for all scenarios where SARS-CoV-2 represented ≤10% of controls. Although bias was driven by the conditional probability of vaccination, low VE of the vaccine of interest and high VE of the confounding vaccine increase its magnitude.

CONCLUSIONS

Where a low percentage of controls is included with the other vaccine-preventable ARI, bias in COVID-19 and influenza VE estimates is low. However, influenza VE estimates are likely more susceptible to bias. Researchers should consider potential bias and its implications in their respective study settings to make informed methodological decisions in test-negative VE studies.

摘要

背景

病例对照设计常用于估计流感和 2019 年冠状病毒病(COVID-19)疫苗的有效性(VE)。在这些研究中,COVID-19 和流感疫苗的相关行为可能会引入混杂偏差,即对照中包含了其他可预防的急性呼吸道疾病(ARI)。我们量化了在未解决这种偏差的情况下进行这些研究对 VE 估计的影响。

方法

我们在不同的疫苗接种概率、COVID-19 VE、流感 VE 和包含其他可预防的 ARI 的对照比例下模拟了研究人群。估计偏差是通过比较真实 VE 计算得出的。VE 估计的绝对平均偏差分为低(<10%)、中(10%至<20%)和高(≥20%)。

结果

当疫苗接种概率呈正相关时,COVID-19 和流感 VE 测试阴性研究分别具有流感和严重急性呼吸系统综合征冠状病毒 2(SARS-CoV-2)ARI 对照,低估了 VE。对于 COVID-19 VE 研究,在流感占对照的比例≤25%的所有情况下,平均偏差均较低。对于流感 VE 研究,在 SARS-CoV-2 占对照的比例≤10%的所有情况下,平均偏差均较低。尽管偏差是由疫苗接种的条件概率驱动的,但感兴趣疫苗的低 VE 和混杂疫苗的高 VE 会增加其幅度。

结论

在只有一小部分对照包含在其他可预防的 ARI 中的情况下,COVID-19 和流感 VE 估计的偏差较低。然而,流感 VE 估计可能更容易受到偏差的影响。研究人员应考虑潜在的偏差及其在各自研究中的影响,以便在测试阴性 VE 研究中做出明智的方法学决策。

相似文献

引用本文的文献

本文引用的文献

3
Covid-19 Vaccine Effectiveness and the Test-Negative Design.新冠病毒疫苗效力与检测阴性设计
N Engl J Med. 2021 Oct 7;385(15):1431-1433. doi: 10.1056/NEJMe2113151. Epub 2021 Sep 8.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验