Shi Wenxian, Wohlwend Jeremy, Wu Menghua, Barzilay Regina
Department of Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
Nat Med. 2025 Aug 28. doi: 10.1038/s41591-025-03917-y.
Current vaccines provide limited protection against rapidly evolving viruses. For example, Centers for Disease Control and Prevention estimates show that the overall influenza vaccine effectiveness against outpatient illness in the United States averaged below 40% between 2012 and 2021. Moreover, the clinical outcomes of a vaccine can be assessed only retrospectively. Here we propose an in silico method named VaxSeer that predicts the antigenic match of vaccine candidates with circulating viruses, in the context of the viruses' relative dominance in the future influenza season. Based on 10 years of retrospective evaluation using sequencing and antigenicity data, our approach consistently selects strains with better empirical antigenic matches to circulating viruses than annual recommendations. Finally, our predicted estimate of antigenic match exhibits a strong correlation with influenza vaccine effectiveness and reduction in disease burden, highlighting the promise of this framework to drive the vaccine selection process.
目前的疫苗对快速进化的病毒提供的保护有限。例如,美国疾病控制与预防中心的估计显示,2012年至2021年期间,流感疫苗对美国门诊疾病的总体有效性平均低于40%。此外,疫苗的临床效果只能通过回顾性评估。在此,我们提出一种名为VaxSeer的计算机模拟方法,该方法可在未来流感季节病毒相对优势的背景下,预测候选疫苗与流行病毒的抗原匹配情况。基于对10年测序和抗原性数据的回顾性评估,我们的方法始终能选出比年度推荐疫苗与流行病毒具有更好经验性抗原匹配的毒株。最后,我们对抗原匹配的预测估计与流感疫苗有效性和疾病负担的降低呈现出强烈的相关性,凸显了这一框架在推动疫苗选择过程方面的前景。