Perichart-Perera Otilia, Avila-Sosa Valeria, Solis-Paredes Juan Mario, Montoya-Estrada Araceli, Reyes-Muñoz Enrique, Rodríguez-Cano Ameyalli M, González-Leyva Carla P, Sánchez-Martínez Maribel, Estrada-Gutierrez Guadalupe, Irles Claudine
Nutrition and Bioprogramming Coordination, Instituto Nacional de Perinatologia, Mexico City 11000, Mexico.
Department of Physiology and Cellular Development, Instituto Nacional de Perinatologia, Mexico City 11000, Mexico.
Antioxidants (Basel). 2022 Mar 17;11(3):574. doi: 10.3390/antiox11030574.
(1) Background: Size at birth is an important early determinant of health later in life. The prevalence of small for gestational age (SGA) newborns is high worldwide and may be associated with maternal nutritional and metabolic factors. Thus, estimation of fetal growth is warranted. (2) Methods: In this work, we developed an artificial neural network (ANN) model based on first-trimester maternal body fat composition, biochemical and oxidative stress biomarkers, and gestational weight gain (GWG) to predict an SGA newborn in pregnancies with or without obesity. A sensibility analysis to classify maternal features was conducted, and a simulator based on the ANN algorithm was constructed to predict the SGA outcome. Several predictions were performed by varying the most critical maternal features attained by the model to obtain different scenarios leading to SGA. (3) Results: The ANN model showed good performance between the actual and simulated data (R = 0.938) and an AUROC of 0.8 on an independent dataset. The top-five maternal predictors in the first trimester were protein and lipid oxidation biomarkers (carbonylated proteins and malondialdehyde), GWG, vitamin D, and total antioxidant capacity. Finally, excessive GWG and redox imbalance predicted SGA newborns in the implemented simulator. Significantly, vitamin D deficiency also predicted simulated SGA independently of GWG or redox status. (4) Conclusions: The study provided a computational model for the early prediction of SGA, in addition to a promising simulator that facilitates hypothesis-driven constructions, to be further validated as an application.
(1) 背景:出生时的体重是日后健康状况的一个重要早期决定因素。全球范围内,小于胎龄(SGA)新生儿的患病率很高,且可能与母亲的营养和代谢因素有关。因此,有必要对胎儿生长情况进行评估。(2) 方法:在本研究中,我们基于孕早期母体的体脂成分、生化和氧化应激生物标志物以及孕期体重增加(GWG),开发了一种人工神经网络(ANN)模型,以预测肥胖或非肥胖孕妇所产的SGA新生儿。对母体特征进行了敏感性分析以进行分类,并构建了一个基于ANN算法的模拟器来预测SGA结局。通过改变模型获得的最关键母体特征进行了多次预测,以得到导致SGA的不同情况。(3) 结果:ANN模型在实际数据和模拟数据之间表现良好(R = 0.938),在独立数据集上的曲线下面积(AUROC)为0.8。孕早期最重要的五个母体预测指标是蛋白质和脂质氧化生物标志物(羰基化蛋白质和丙二醛)、GWG、维生素D和总抗氧化能力。最后,在实施的模拟器中,过量的GWG和氧化还原失衡可预测SGA新生儿。值得注意的是,维生素D缺乏也可独立于GWG或氧化还原状态预测模拟的SGA。(4) 结论:该研究除提供了一个有前景的便于进行假设驱动构建的模拟器外,还为SGA的早期预测提供了一个计算模型,有待作为一种应用进一步验证。