Khaleel Mohammad Ali, Khan Amer Hayat, Ghadzi Siti Maisharah Sheikh, Adnan Azreen Syazril, Abdallah Qasem M
Discipline of Clinical Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia.
Advanced Medical & Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Penang, Malaysia.
Healthcare (Basel). 2022 Feb 23;10(3):420. doi: 10.3390/healthcare10030420.
One of the largest spontaneous adverse events reporting databases in the world is the Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS). Unfortunately, researchers face many obstacles in analyzing data from the FAERS database. One of the major obstacles is the unstructured entry of drug names into the FAERS, as reporters might use generic names or trade names with different naming structures from all over the world and, in some cases, with typographical errors. Moreover, report duplication is a known problem in spontaneous adverse event-reporting systems, including the FAERS database. Hence, thorough text processing for database entries, especially drug name entries, coupled with a practical case-deduplication logic, is a prerequisite to analyze the database, which is a time- and resource-consuming procedure. In this study, we provide a clean, deduplicated, and ready-to-import dataset into any relational database management software of the FAERS database up to September 2021. Drug names are standardized to the RxNorm vocabulary and normalized to the single active ingredient level. Moreover, a pre-calculated disproportionate analysis is provided, which includes the reporting odds ratio (ROR), proportional reporting ratio (PRR), Chi-squared analysis with Yates correction (x2), and information component (IC) for each drug-adverse event pair in the database.
世界上最大的自发不良事件报告数据库之一是美国食品药品监督管理局(FDA)的不良事件报告系统(FAERS)。不幸的是,研究人员在分析FAERS数据库的数据时面临许多障碍。主要障碍之一是药物名称在FAERS中的非结构化录入,因为报告者可能使用通用名或商品名,这些名称来自世界各地,具有不同的命名结构,而且在某些情况下还存在排版错误。此外,报告重复是自发不良事件报告系统(包括FAERS数据库)中一个已知的问题。因此,对数据库条目,尤其是药物名称条目进行全面的文本处理,并结合实用的案例去重逻辑,是分析该数据库的先决条件,而这是一个耗时且耗费资源的过程。在本研究中,我们提供了一个截至2021年9月的FAERS数据库的干净、去重且可直接导入任何关系数据库管理软件的数据集。药物名称已标准化为RxNorm词汇表,并归一化为单一活性成分水平。此外,还提供了预先计算的不成比例分析,其中包括数据库中每个药物-不良事件对的报告比值比(ROR)、比例报告比(PRR)、带Yates校正的卡方分析(x2)和信息成分(IC)。