Li Rongpei, Zhang Yufang, Sun Heqi, Lin Shenggeng, Jia Guihua, Fang Yitian, Zhang Chen, Song Xiaotong, Zhao Jianwei, Hu Lyubin, Yuan Yajing, Mao Xueying, Li Jiayi, Kaushik Aman, An Dandan, Wei Dongqing
State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
Zhongjing Research and Industrialization Institute of Chinese Medicine, Henan, China.
PeerJ Comput Sci. 2025 Apr 22;11:e2847. doi: 10.7717/peerj-cs.2847. eCollection 2025.
Drug-drug interactions (DDIs) account for 17-23% of adverse drug reactions leading to hospitalization, with over 74,000 DDI-related events reported in the FDA Adverse Event Reporting System (FAERS) during 2023. While recent computational methods focus on improving prediction accuracy, they suffer from high false-positive rates (>45%) and often function as black-box models without biological interpretability.
We propose Dual-stage attention and Bayesian calibration with active learning Drug-Drug Interaction (DABI-DDI), a novel framework integrating: (1) A dual-stage attention mechanism with LSTM networks for capturing temporal dependencies in drug interactions, (2) a Bayesian calibration approach with beta-binomial modeling for refining interaction signals and reducing false positives, (3) an active learning strategy for efficient sample selection, and (4) a network pharmacology component linking drug interactions to underlying biological mechanisms. The model was validated using data from FAERS, DrugBank, and STRING databases, with comprehensive evaluation on both computational performance and biological interpretability.
DABI-DDI achieved superior performance (AUC = 0.947, PR_AUC = 0.944). Bayesian calibration improved adverse event detection accuracy (94% . 54% AUC), while network pharmacology revealed key molecular mechanisms through enzyme-transporter interactions. Ablation studies demonstrated each component's significance, with active learning maintaining performance while reducing training data requirements.
We present DABI-DDI, an integrated feature extraction framework that successfully addresses key challenges in DDIs prediction through three major innovations: Temporal pattern recognition, reducing false positives, and biological interpretability. Most importantly, the framework demonstrates strong clinical applicability by efficiently identifying high-risk drug combinations while providing mechanistic insights through enzyme-transporter pathway analysis. This approach bridges the gap between computational prediction and clinical understanding, offering a promising tool for safer drug combination therapy.
药物相互作用(DDIs)导致的不良药物反应占住院病例的17%-23%,2023年美国食品药品监督管理局不良事件报告系统(FAERS)报告了超过74000起与药物相互作用相关的事件。虽然最近的计算方法专注于提高预测准确性,但它们存在较高的假阳性率(>45%),并且通常作为没有生物学可解释性的黑箱模型。
我们提出了具有主动学习功能的双阶段注意力和贝叶斯校准药物-药物相互作用(DABI-DDI),这是一个新颖的框架,整合了:(1)用于捕获药物相互作用中时间依赖性的具有长短期记忆网络的双阶段注意力机制;(2)用于优化相互作用信号并减少假阳性的具有贝塔-二项式建模的贝叶斯校准方法;(3)用于高效样本选择的主动学习策略;(4)将药物相互作用与潜在生物学机制联系起来的网络药理学组件。该模型使用来自FAERS、DrugBank和STRING数据库的数据进行验证,并对计算性能和生物学可解释性进行了全面评估。
DABI-DDI取得了卓越的性能(曲线下面积[AUC]=0.947,精确率-召回率曲线下面积[PR_AUC]=0.944)。贝叶斯校准提高了不良事件检测的准确性(AUC从54%提高到94%),而网络药理学通过酶-转运体相互作用揭示了关键分子机制。消融研究证明了每个组件的重要性,主动学习在减少训练数据需求的同时保持了性能。
我们提出了DABI-DDI,这是一个集成特征提取框架,通过三项重大创新成功解决了药物相互作用预测中的关键挑战:时间模式识别、减少假阳性和生物学可解释性。最重要的是,该框架通过高效识别高风险药物组合,同时通过酶-转运体途径分析提供机制性见解,展示了强大的临床适用性。这种方法弥合了计算预测与临床理解之间的差距,为更安全的药物联合治疗提供了一个有前景的工具。