Suppr超能文献

家畜情感状态识别——人工智能方法

Affective State Recognition in Livestock-Artificial Intelligence Approaches.

作者信息

Neethirajan Suresh

机构信息

Farmworx, Adaptation Physiology Group, Animal Sciences Department, Wageningen University and Research, 6700 AH Wageningen, The Netherlands.

出版信息

Animals (Basel). 2022 Mar 17;12(6):759. doi: 10.3390/ani12060759.

Abstract

Farm animals, numbering over 70 billion worldwide, are increasingly managed in large-scale, intensive farms. With both public awareness and scientific evidence growing that farm animals experience suffering, as well as affective states such as fear, frustration and distress, there is an urgent need to develop efficient and accurate methods for monitoring their welfare. At present, there are not scientifically validated 'benchmarks' for quantifying transient emotional (affective) states in farm animals, and no established measures of good welfare, only indicators of poor welfare, such as injury, pain and fear. Conventional approaches to monitoring livestock welfare are time-consuming, interrupt farming processes and involve subjective judgments. Biometric sensor data enabled by artificial intelligence is an emerging smart solution to unobtrusively monitoring livestock, but its potential for quantifying affective states and ground-breaking solutions in their application are yet to be realized. This review provides innovative methods for collecting big data on farm animal emotions, which can be used to train artificial intelligence models to classify, quantify and predict affective states in individual pigs and cows. Extending this to the group level, social network analysis can be applied to model emotional dynamics and contagion among animals. Finally, 'digital twins' of animals capable of simulating and predicting their affective states and behaviour in real time are a near-term possibility.

摘要

全球农场动物数量超过700亿,且越来越多地在大规模集约化农场中养殖。随着公众意识的提高以及科学证据表明农场动物会经历痛苦以及恐惧、沮丧和痛苦等情感状态,迫切需要开发高效、准确的方法来监测它们的福利。目前,尚无科学验证的用于量化农场动物短暂情绪(情感)状态的“基准”,也没有既定的良好福利衡量标准,只有不良福利的指标,如伤害、疼痛和恐惧。传统的监测家畜福利的方法耗时、中断养殖过程且涉及主观判断。人工智能支持的生物识别传感器数据是一种新兴的智能解决方案,可用于在不干扰的情况下监测家畜,但其在量化情感状态方面的潜力以及在应用中的开创性解决方案尚未实现。本综述提供了收集农场动物情绪大数据的创新方法,可用于训练人工智能模型,以对个体猪和牛的情感状态进行分类、量化和预测。将此扩展到群体层面,社交网络分析可用于模拟动物之间的情绪动态和传染。最后,能够实时模拟和预测动物情感状态和行为的动物“数字双胞胎”在短期内成为可能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e7a/8944789/f40ca2f91eaa/animals-12-00759-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验