Lee Kuo-Hua, Chu Yuan-Chia, Tsai Ming-Tsun, Tseng Wei-Cheng, Lin Yao-Ping, Ou Shuo-Ming, Tarng Der-Cherng
Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11217, Taiwan.
Biomedicines. 2022 Feb 24;10(3):546. doi: 10.3390/biomedicines10030546.
Sepsis may lead to kidney function decline in patients with chronic kidney disease (CKD), and the deleterious effect may persist in patients who survive sepsis. We used a machine learning approach to predict the risk of end-stage renal disease (ESRD) in sepsis survivors. A total of 11,661 sepsis survivors were identified from a single-center database of 112,628 CKD patients between 2010 and 2018. During a median follow-up of 3.5 years, a total of 1366 (11.7%) sepsis survivors developed ESRD after hospital discharge. We adopted the random forest, extra trees, extreme gradient boosting, light gradient boosting machine (LGBM), and gradient boosting decision tree (GBDT) algorithms to predict the risk of ESRD development among these patients. GBDT yielded the highest area under the receiver operating characteristic curve of 0.879, followed by LGBM (0.868), and extra trees (0.865). The GBDT model revealed the strong effect of estimated glomerular filtration rates <25 mL/min/1.73 m2 at discharge in predicting ESRD development. In addition, hemoglobin and proteinuria were also essential predictors. Based on a large-scale dataset, we established a machine learning model computing the risk for ESRD occurrence among sepsis survivors with CKD. External validation is required to evaluate the generalizability of this model.
脓毒症可能导致慢性肾脏病(CKD)患者的肾功能下降,且这种有害影响可能在脓毒症幸存者中持续存在。我们采用机器学习方法来预测脓毒症幸存者发生终末期肾病(ESRD)的风险。从2010年至2018年的一个包含112,628例CKD患者的单中心数据库中,共识别出11,661例脓毒症幸存者。在中位随访3.5年期间,共有1366例(11.7%)脓毒症幸存者在出院后发生了ESRD。我们采用随机森林、极端随机树、极端梯度提升、轻量级梯度提升机(LGBM)和梯度提升决策树(GBDT)算法来预测这些患者发生ESRD的风险。GBDT在受试者工作特征曲线下的面积最高,为0.879,其次是LGBM(0.868)和极端随机树(0.865)。GBDT模型显示,出院时估计肾小球滤过率<25 mL/min/1.73 m²对预测ESRD的发生有很强的影响。此外,血红蛋白和蛋白尿也是重要的预测指标。基于一个大规模数据集,我们建立了一个机器学习模型来计算CKD脓毒症幸存者发生ESRD的风险。需要进行外部验证来评估该模型的通用性。