文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

预测慢性肾脏病的进展:人工智能和机器学习方法的系统评价

Predicting the Progression of Chronic Kidney Disease: A Systematic Review of Artificial Intelligence and Machine Learning Approaches.

作者信息

Khalid Fizza, Alsadoun Lara, Khilji Faria, Mushtaq Maham, Eze-Odurukwe Anthony, Mushtaq Muhammad Muaz, Ali Husnain, Farman Rana Omer, Ali Syed Momin, Fatima Rida, Bokhari Syed Faqeer Hussain

机构信息

Nephrology, Sharif Medical City Hospital, Lahore, PAK.

Trauma and Orthopedics, Chelsea and Westminster Hospital, London, GBR.

出版信息

Cureus. 2024 May 12;16(5):e60145. doi: 10.7759/cureus.60145. eCollection 2024 May.


DOI:10.7759/cureus.60145
PMID:38864072
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11166249/
Abstract

Chronic kidney disease (CKD) is a progressive condition characterized by gradual loss of kidney function, necessitating timely monitoring and interventions. This systematic review comprehensively evaluates the application of artificial intelligence (AI) and machine learning (ML) techniques for predicting CKD progression. A rigorous literature search identified 13 relevant studies employing diverse AI/ML algorithms, including logistic regression, support vector machines, random forests, neural networks, and deep learning approaches. These studies primarily aimed to predict CKD progression to end-stage renal disease (ESRD) or the need for renal replacement therapy, with some focusing on diabetic kidney disease progression, proteinuria, or estimated glomerular filtration rate (GFR) decline. The findings highlight the promising predictive performance of AI/ML models, with several achieving high accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve scores. Key factors contributing to enhanced prediction included incorporating longitudinal data, baseline characteristics, and specific biomarkers such as estimated GFR, proteinuria, serum albumin, and hemoglobin levels. Integration of these predictive models with electronic health records and clinical decision support systems offers opportunities for timely risk identification, early interventions, and personalized management strategies. While challenges related to data quality, bias, and ethical considerations exist, the reviewed studies underscore the potential of AI/ML techniques to facilitate early detection, risk stratification, and targeted interventions for CKD patients. Ongoing research, external validation, and careful implementation are crucial to leveraging these advanced analytical approaches in clinical practice, ultimately improving outcomes and reducing the burden of CKD.

摘要

慢性肾脏病(CKD)是一种进行性疾病,其特征是肾功能逐渐丧失,需要及时监测和干预。本系统评价全面评估了人工智能(AI)和机器学习(ML)技术在预测CKD进展中的应用。一项严格的文献检索确定了13项相关研究,这些研究采用了多种AI/ML算法,包括逻辑回归、支持向量机、随机森林、神经网络和深度学习方法。这些研究主要旨在预测CKD进展至终末期肾病(ESRD)或肾替代治疗的需求,一些研究关注糖尿病肾病进展、蛋白尿或估计肾小球滤过率(GFR)下降。研究结果突出了AI/ML模型具有前景的预测性能,其中一些模型在准确性、敏感性、特异性以及受试者工作特征曲线下面积得分方面表现出色。有助于提高预测的关键因素包括纳入纵向数据、基线特征以及特定生物标志物,如估计GFR、蛋白尿、血清白蛋白和血红蛋白水平。将这些预测模型与电子健康记录和临床决策支持系统相结合,为及时识别风险、早期干预和个性化管理策略提供了机会。尽管存在与数据质量、偏差和伦理考量相关的挑战,但所综述的研究强调了AI/ML技术在促进CKD患者早期检测、风险分层和靶向干预方面的潜力。持续的研究、外部验证和谨慎实施对于在临床实践中利用这些先进分析方法至关重要,最终改善治疗结果并减轻CKD负担。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17bf/11166249/678501c972f0/cureus-0016-00000060145-i01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17bf/11166249/678501c972f0/cureus-0016-00000060145-i01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17bf/11166249/678501c972f0/cureus-0016-00000060145-i01.jpg

相似文献

[1]
Predicting the Progression of Chronic Kidney Disease: A Systematic Review of Artificial Intelligence and Machine Learning Approaches.

Cureus. 2024-5-12

[2]
Artificial intelligence in chronic kidney diseases: methodology and potential applications.

Int Urol Nephrol. 2025-1

[3]
CKD Progression Prediction in a Diverse US Population: A Machine-Learning Model.

Kidney Med. 2023-6-24

[4]
Artificial Intelligence and Machine Learning in Predicting Intradialytic Hypotension in Hemodialysis Patients: A Systematic Review.

Cureus. 2024-7-25

[5]
Interpretable machine learning for predicting chronic kidney disease progression risk.

Digit Health. 2024-1-15

[6]
Development and internal validation of machine learning algorithms for end-stage renal disease risk prediction model of people with type 2 diabetes mellitus and diabetic kidney disease.

Ren Fail. 2022-12

[7]
Artificial intelligence in clinical care amidst COVID-19 pandemic: A systematic review.

Comput Struct Biotechnol J. 2021

[8]
Artificial Intelligence for Risk Prediction of End-Stage Renal Disease in Sepsis Survivors with Chronic Kidney Disease.

Biomedicines. 2022-2-24

[9]
Early referral strategies for management of people with markers of renal disease: a systematic review of the evidence of clinical effectiveness, cost-effectiveness and economic analysis.

Health Technol Assess. 2010-4

[10]
Unlocking Precision Medicine for Prognosis of Chronic Kidney Disease Using Machine Learning.

Diagnostics (Basel). 2023-10-8

引用本文的文献

[1]
A population based optimization of convolutional neural networks for chronic kidney disease prediction.

Sci Rep. 2025-4-25

[2]
Public interest in chronic kidney disease and dialysis: a 20-year data analysis.

Ren Fail. 2025-12

[3]
Artificial intelligence in predicting chronic kidney disease prognosis. A systematic review and meta-analysis.

Ren Fail. 2024-12

本文引用的文献

[1]
Application of Machine Learning in Chronic Kidney Disease: Current Status and Future Prospects.

Biomedicines. 2024-3-3

[2]
Artificial Intelligence in Kidney Disease: A Comprehensive Study and Directions for Future Research.

Diagnostics (Basel). 2024-2-12

[3]
A Brief Review of Diagnostic Techniques and Clinical Management in Chronic Kidney Disease.

Cureus. 2023-11-18

[4]
Prediction of chronic kidney disease progression using recurrent neural network and electronic health records.

Sci Rep. 2023-12-13

[5]
Revolutionizing Chronic Kidney Disease Management with Machine Learning and Artificial Intelligence.

J Clin Med. 2023-4-21

[6]
Machine Learning Models for the Prediction of Renal Failure in Chronic Kidney Disease: A Retrospective Cohort Study.

Diagnostics (Basel). 2022-10-11

[7]
Development of a machine learning-based prediction model for extremely rapid decline in estimated glomerular filtration rate in patients with chronic kidney disease: a retrospective cohort study using a large data set from a hospital in Japan.

BMJ Open. 2022-6-9

[8]
Epidemiology of chronic kidney disease: an update 2022.

Kidney Int Suppl (2011). 2022-4

[9]
Development and internal validation of machine learning algorithms for end-stage renal disease risk prediction model of people with type 2 diabetes mellitus and diabetic kidney disease.

Ren Fail. 2022-12

[10]
Artificial Intelligence for Risk Prediction of End-Stage Renal Disease in Sepsis Survivors with Chronic Kidney Disease.

Biomedicines. 2022-2-24

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索