Agou Vasiliki D, Pavlides Andrew, Hristopulos Dionissios T
School of Mineral Resources Engineering, Technical University of Crete, 73100 Chania, Crete, Greece.
School of Electrical and Computer Engineering, Technical University of Crete, 73100 Chania, Crete, Greece.
Entropy (Basel). 2022 Feb 23;24(3):321. doi: 10.3390/e24030321.
Modeling and forecasting spatiotemporal patterns of precipitation is crucial for managing water resources and mitigating water-related hazards. Globally valid spatiotemporal models of precipitation are not available. This is due to the intermittent nature, non-Gaussian distribution, and complex geographical dependence of precipitation processes. Herein we propose a data-driven model of precipitation amount which employs a novel, data-driven (non-parametric) implementation of warped Gaussian processes. We investigate the proposed warped Gaussian process regression (wGPR) using (i) a synthetic test function contaminated with non-Gaussian noise and (ii) a reanalysis dataset of monthly precipitation from the Mediterranean island of Crete. Cross-validation analysis is used to establish the advantages of non-parametric warping for the interpolation of incomplete data. We conclude that wGPR equipped with the proposed data-driven warping provides enhanced flexibility and-at least for the cases studied- improved predictive accuracy for non-Gaussian data.
对降水的时空模式进行建模和预测对于水资源管理和减轻与水相关的灾害至关重要。目前尚无全球通用的降水时空模型。这是由于降水过程具有间歇性、非高斯分布以及复杂的地理依赖性。在此,我们提出了一种降水量数据驱动模型,该模型采用了一种新颖的数据驱动(非参数)翘曲高斯过程实现方式。我们使用(i)一个被非高斯噪声污染的合成测试函数和(ii)地中海克里特岛的月降水量再分析数据集来研究提出的翘曲高斯过程回归(wGPR)。交叉验证分析用于确定非参数翘曲在不完整数据插值方面的优势。我们得出结论,配备所提出的数据驱动翘曲的wGPR提供了更高的灵活性,并且至少在所研究的案例中,提高了对非高斯数据的预测准确性。