Hossen Imtiaz, Anders Mark A, Wang Lin, Adam Gina C
Department of Electrical and Computer Engineering, The George Washington University, Washington, DC, 20052, USA.
National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA.
Sci Rep. 2022 Apr 8;12(1):5963. doi: 10.1038/s41598-022-09556-4.
A two-tier Kriging interpolation approach is proposed to model jump tables for resistive switches. Originally developed for mining and geostatistics, its locality of the calculation makes this approach particularly powerful for modeling electronic devices with complex behavior landscape and switching noise, like RRAM. In this paper, a first Kriging model is used to model and predict the mean in the signal, followed up by a second Kriging step used to model the standard deviation of the switching noise. We use 36 synthetic datasets covering a broad range of different mean and standard deviation Gaussian distributions to test the validity of our approach. We also show the applicability to experimental data obtained from TiO devices and compare the predicted vs. the experimental test distributions using Kolmogorov-Smirnov and maximum mean discrepancy tests. Our results show that the proposed Kriging approach can predict both the mean and standard deviation in the switching more accurately than typical binning model. Kriging-based jump tables can be used to realistically model the behavior of RRAM and other non-volatile analog device populations and the impact of the weight dispersion in neural network simulations.
本文提出了一种双层克里金插值方法来为电阻式开关建立跳变表模型。该方法最初是为采矿和地质统计学开发的,其计算的局部性使得它对于建模具有复杂行为态势和开关噪声的电子器件(如RRAM)特别有效。在本文中,首先使用一个克里金模型来建模和预测信号中的均值,随后进行第二步克里金步骤,用于对开关噪声的标准差进行建模。我们使用36个合成数据集,这些数据集涵盖了广泛的不同均值和标准差的高斯分布,以测试我们方法的有效性。我们还展示了该方法对从TiO器件获得的实验数据的适用性,并使用柯尔莫哥洛夫-斯米尔诺夫检验和最大均值差异检验来比较预测分布与实验测试分布。我们的结果表明,所提出的克里金方法在预测开关中的均值和标准差方面比典型的分箱模型更准确。基于克里金的跳变表可用于实际模拟RRAM和其他非易失性模拟器件群体的行为,以及神经网络模拟中权重分散的影响。