Suppr超能文献

元克里金法:针对大规模空间数据集的可扩展贝叶斯建模与推理

Meta-Kriging: Scalable Bayesian Modeling and Inference for Massive Spatial Datasets.

作者信息

Guhaniyogi Rajarshi, Banerjee Sudipto

机构信息

Universisty of California, Santa Cruz.

Universisty of California, Los Angeles.

出版信息

Technometrics. 2018;60(4):430-444. doi: 10.1080/00401706.2018.1437474. Epub 2018 Jun 6.

Abstract

Spatial process models for analyzing geostatistical data entail computations that become prohibitive as the number of spatial locations becomes large. There is a burgeoning literature on approaches for analyzing large spatial datasets. In this article, we propose a divide-and-conquer strategy within the Bayesian paradigm. We partition the data into subsets, analyze each subset using a Bayesian spatial process model and then obtain approximate posterior inference for the entire dataset by combining the individual posterior distributions from each subset. Importantly, as often desired in spatial analysis, we offer full posterior predictive inference at arbitrary locations for the outcome as well as the residual spatial surface after accounting for spatially oriented predictors. We call this approach "Spatial Meta-Kriging" (SMK). We do not need to store the entire data in one processor, and this leads to superior scalability. We demonstrate SMK with various spatial regression models including Gaussian processes and tapered Gaussian processes. The approach is intuitive, easy to implement, and is supported by theoretical results presented in the supplementary material available online. Empirical illustrations are provided using different simulation experiments and a geostatistical analysis of Pacific Ocean sea surface temperature data.

摘要

用于分析地理统计数据的空间过程模型所涉及的计算,会随着空间位置数量的增加而变得难以承受。关于分析大型空间数据集的方法,有大量不断涌现的文献。在本文中,我们在贝叶斯范式内提出了一种分而治之的策略。我们将数据划分为子集,使用贝叶斯空间过程模型分析每个子集,然后通过组合每个子集的个体后验分布来获得整个数据集的近似后验推断。重要的是,正如空间分析中经常期望的那样,在考虑空间定向预测变量后,我们为任意位置的结果以及残差空间表面提供完整的后验预测推断。我们将这种方法称为“空间元克里金法”(SMK)。我们无需将整个数据存储在一个处理器中,这带来了卓越的可扩展性。我们用包括高斯过程和渐缩高斯过程在内的各种空间回归模型展示了SMK。该方法直观、易于实现,并得到了在线补充材料中给出的理论结果的支持。使用不同的模拟实验和对太平洋海表温度数据的地理统计分析提供了实证说明。

相似文献

2
Multivariate spatial meta kriging.多元空间元克里金法
Stat Probab Lett. 2019 Jan;144:3-8. doi: 10.1016/j.spl.2018.04.017. Epub 2018 May 4.
4
On nearest-neighbor Gaussian process models for massive spatial data.关于海量空间数据的最近邻高斯过程模型。
Wiley Interdiscip Rev Comput Stat. 2016 Sep-Oct;8(5):162-171. doi: 10.1002/wics.1383. Epub 2016 Aug 4.
8
High-Dimensional Bayesian Geostatistics.高维贝叶斯地质统计学
Bayesian Anal. 2017 Jun;12(2):583-614. doi: 10.1214/17-BA1056R. Epub 2017 May 16.
10
Bayesian Modeling and Analysis of Geostatistical Data.贝叶斯地理统计数据建模与分析
Annu Rev Stat Appl. 2017 Mar;4:245-266. doi: 10.1146/annurev-statistics-060116-054155. Epub 2016 Nov 28.

引用本文的文献

1
Finite Population Survey Sampling: An Unapologetic Bayesian Perspective.有限总体调查抽样:一种毫无歉意的贝叶斯视角。
Sankhya Ser A. 2024 Nov;86(Suppl 1):95-124. doi: 10.1007/s13171-024-00348-8. Epub 2024 Apr 8.
4
Monotone response surface of multi-factor condition: estimation and Bayes classifiers.多因素条件下的单调响应曲面:估计与贝叶斯分类器
J R Stat Soc Series B Stat Methodol. 2023 Apr;85(2):497-522. doi: 10.1093/jrsssb/qkad014. Epub 2023 Mar 22.
6
Efficient algorithms for Bayesian Nearest Neighbor Gaussian Processes.用于贝叶斯最近邻高斯过程的高效算法。
J Comput Graph Stat. 2019;28(2):401-414. doi: 10.1080/10618600.2018.1537924. Epub 2019 Apr 1.
7
A Case Study Competition Among Methods for Analyzing Large Spatial Data.大型空间数据分析方法的案例研究竞赛
J Agric Biol Environ Stat. 2019;24(3):398-425. doi: 10.1007/s13253-018-00348-w. Epub 2018 Dec 14.
8
Multivariate spatial meta kriging.多元空间元克里金法
Stat Probab Lett. 2019 Jan;144:3-8. doi: 10.1016/j.spl.2018.04.017. Epub 2018 May 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验