Suppr超能文献

比较 BeadChip 和 WGS 基因分型:非技术失败的调用归因于探针目标序列内的额外变异。

Comparing BeadChip and WGS Genotyping: Non-Technical Failed Calling Is Attributable to Additional Variation within the Probe Target Sequence.

机构信息

Agricultural Research Organization (ARO), Volcani Center, Institute of Animal Science, HaMaccabim Road, P.O. Box 15159, Rishon LeTsiyon 7528809, Israel.

出版信息

Genes (Basel). 2022 Mar 9;13(3):485. doi: 10.3390/genes13030485.

Abstract

Microarray-based genomic selection is a central tool to increase the genetic gain of economically significant traits in dairy cattle. Yet, the effectivity of this tool is slightly limited, as estimates based on genotype data only partially explain the observed heritability. In the analysis of the genomes of 17 Israeli Holstein bulls, we compared genotyping accuracy between whole-genome sequencing (WGS) and microarray-based techniques. Using the standard GATK pipeline, the short-variant discovery within sequence reads mapped to the reference genome (ARS-UCD1.2) was compared to the genotypes from Illumina BovineSNP50 BeadChip and to an alternative method, which computationally mimics the hybridization procedure by mapping reads to 50 bp spanning the BeadChip source sequences. The number of mismatches between the BeadChip and WGS genotypes was low (0.2%). However, 17,197 (40% of the informative SNPs) had extra variation within 50 bp of the targeted SNP site, which might interfere with hybridization-based genotyping. Consequently, with respect to genotyping errors, BeadChip varied significantly and systematically from WGS genotyping, introducing null allele-like effects and Mendelian errors (<0.5%), whereas the GATK algorithm of local de novo assembly of haplotypes successfully resolved the genotypes in the extra-variable regions. These findings suggest that the microarray design should avoid polymorphic genomic regions that are prone to extra variation and that WGS data may be used to resolve erroneous genotyping, which may partially explain missing heritability.

摘要

基于微阵列的基因组选择是提高奶牛经济性状遗传增益的核心工具。然而,由于基于基因型数据的估计仅部分解释了观察到的遗传力,因此该工具的有效性略显有限。在对 17 头以色列荷斯坦公牛的基因组进行分析时,我们比较了全基因组测序 (WGS) 和基于微阵列的技术的基因分型准确性。使用标准的 GATK 管道,将序列读取中映射到参考基因组 (ARS-UCD1.2) 的短变异发现与 Illumina BovineSNP50 BeadChip 的基因型以及替代方法进行了比较,该替代方法通过将读取映射到 50bp 来模拟杂交过程跨越 BeadChip 源序列。BeadChip 和 WGS 基因型之间的错配数量很少 (0.2%)。然而,在目标 SNP 位点的 50bp 内有 17197 个 (40%的信息 SNP) 存在额外的变异,这可能会干扰基于杂交的基因分型。因此,就基因分型错误而言,BeadChip 与 WGS 基因分型存在显著且系统的差异,引入了类似无效等位基因的效应和孟德尔错误(<0.5%),而局部从头组装单倍型的 GATK 算法成功解决了额外可变区域中的基因型问题。这些发现表明,微阵列设计应避免易发生额外变异的多态性基因组区域,并且可以使用 WGS 数据来解决错误的基因分型,这可能部分解释了遗传力的缺失。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad0b/8948885/28f14e6c2889/genes-13-00485-g001.jpg

相似文献

引用本文的文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验