Suppr超能文献

大肠杆菌K-12耐诺氟沙星突变体的分离与鉴定

Isolation and characterization of norfloxacin-resistant mutants of Escherichia coli K-12.

作者信息

Hirai K, Aoyama H, Suzue S, Irikura T, Iyobe S, Mitsuhashi S

出版信息

Antimicrob Agents Chemother. 1986 Aug;30(2):248-53. doi: 10.1128/AAC.30.2.248.

Abstract

We isolated spontaneous mutants from Escherichia coli K-12 with low-level resistance to norfloxacin. These mutants were classified into the following three types on the basis of their properties: (i) NorA appeared to result for mutation in the gyrA locus for the A subunit of DNA gyrase; (ii) NorB showed low-level resistance to quinolones and other antimicrobial agents (e.g., cefoxitin, chloramphenicol, and tetracycline), and the norB gene was considered to map at about 34 min on the E. coli K-12 chromosome; (iii) NorC was less susceptible to norfloxacin and ciprofloxacin but was hypersusceptible to hydrophobic quinolones such as nalidixic acid and rosoxacin, hydrophobic antibiotics, dyes, and detergents. Susceptibility to bacteriophages and the hydrophobicity of the NorC cell surface also differed from that of the parent strain. The norC gene was located near the lac locus at 8 min on the E. coli K-12 chromosome. Both NorB and NorC mutants had a lower rate of norfloxacin uptake, and it was found that the NorB mutant was altered in OmpF porin and that the NorC mutant was altered in both OmpF porin and apparently in the lipopolysaccharide structure of the outer membrane.

摘要

我们从对诺氟沙星具有低水平抗性的大肠杆菌K-12中分离出自发突变体。根据其特性,这些突变体可分为以下三种类型:(i) NorA似乎是由DNA回旋酶A亚基的gyrA基因座发生突变所致;(ii) NorB对喹诺酮类药物和其他抗菌剂(如头孢西丁、氯霉素和四环素)表现出低水平抗性,并且norB基因被认为位于大肠杆菌K-12染色体上约34分钟处;(iii) NorC对诺氟沙星和环丙沙星不太敏感,但对疏水性喹诺酮类药物(如萘啶酸和咯索沙星)、疏水性抗生素、染料和去污剂高度敏感。NorC对噬菌体的敏感性以及其细胞表面的疏水性也与亲本菌株不同。norC基因位于大肠杆菌K-12染色体上8分钟处的lac基因座附近。NorB和NorC突变体对诺氟沙星的摄取率均较低,并且发现NorB突变体的OmpF孔蛋白发生了改变,而NorC突变体的OmpF孔蛋白以及外膜的脂多糖结构显然都发生了改变。

相似文献

1
Isolation and characterization of norfloxacin-resistant mutants of Escherichia coli K-12.
Antimicrob Agents Chemother. 1986 Aug;30(2):248-53. doi: 10.1128/AAC.30.2.248.
2
Genetic and biochemical characterization of norfloxacin resistance in Escherichia coli.
Antimicrob Agents Chemother. 1986 Apr;29(4):639-44. doi: 10.1128/AAC.29.4.639.
6
7
Relationship between the expression of ompF and quinolone resistance in Escherichia coli.
J Infect Chemother. 2009 Dec;15(6):361-6. doi: 10.1007/s10156-009-0716-6.
8
Mechanisms involved in the development of resistance to fluoroquinolones in Escherichia coli isolates.
J Antimicrob Chemother. 1999 Dec;44(6):735-42. doi: 10.1093/jac/44.6.735.
9
In vitro selection of Escherichia coli mutants with decreased susceptibility to norfloxacin.
Scand J Infect Dis. 1988;20(5):531-4. doi: 10.3109/00365548809032502.
10
The accumulation of five antibacterial agents in porin-deficient mutants of Escherichia coli.
J Antimicrob Chemother. 1993 Aug;32(2):195-213. doi: 10.1093/jac/32.2.195.

引用本文的文献

1
Navigating fluoroquinolone resistance in Gram-negative bacteria: a comprehensive evaluation.
JAC Antimicrob Resist. 2024 Aug 14;6(4):dlae127. doi: 10.1093/jacamr/dlae127. eCollection 2024 Aug.
2
Unusual and Unconsidered Mechanisms of Bacterial Resilience and Resistance to Quinolones.
Life (Basel). 2024 Mar 14;14(3):383. doi: 10.3390/life14030383.
3
A Dietary Source of High Level of Fluoroquinolone Tolerance in -Carrying Gram-Negative Bacteria.
Research (Wash D C). 2023 Oct 6;6:0245. doi: 10.34133/research.0245. eCollection 2023.
4
Influence of Membrane Asymmetry on OmpF Insertion, Orientation and Function.
Membranes (Basel). 2023 May 16;13(5):517. doi: 10.3390/membranes13050517.
5
Mutational Diversity in the Quinolone Resistance-Determining Regions of Type-II Topoisomerases of Serovars.
Antibiotics (Basel). 2021 Nov 26;10(12):1455. doi: 10.3390/antibiotics10121455.
6
Plasmid-mediated quinolone resistance in Enterobacteriaceae: a systematic review with a focus on Mediterranean countries.
Eur J Clin Microbiol Infect Dis. 2017 Mar;36(3):421-435. doi: 10.1007/s10096-016-2847-x. Epub 2016 Nov 26.
7
Resistance of Permafrost and Modern Strains to Heavy Metals and Arsenic Revealed by Genome Analysis.
Biomed Res Int. 2016;2016:3970831. doi: 10.1155/2016/3970831. Epub 2016 Oct 4.
8
Mutations That Enhance the Ciprofloxacin Resistance of Escherichia coli with qnrA1.
Antimicrob Agents Chemother. 2015 Dec 28;60(3):1537-45. doi: 10.1128/AAC.02167-15.
10
Biochemistry of bacterial multidrug efflux pumps.
Int J Mol Sci. 2012;13(4):4484-4495. doi: 10.3390/ijms13044484. Epub 2012 Apr 10.

本文引用的文献

1
Mutants of Escherichia coli requiring methionine or vitamin B12.
J Bacteriol. 1950 Jul;60(1):17-28. doi: 10.1128/jb.60.1.17-28.1950.
2
Transduction of linked genetic characters of the host by bacteriophage P1.
Virology. 1955 Jul;1(2):190-206. doi: 10.1016/0042-6822(55)90016-7.
3
Mutants of Escherichia coli that are resistant to certain beta-lactam compounds lack the ompF porin.
Antimicrob Agents Chemother. 1981 Oct;20(4):549-52. doi: 10.1128/AAC.20.4.549.
4
Role of porin proteins OmpF and OmpC in the permeation of beta-lactams.
Antimicrob Agents Chemother. 1982 Dec;22(6):942-8. doi: 10.1128/AAC.22.6.942.
5
6
In vitro antibacterial activity of AM-715, a new nalidixic acid analog.
Antimicrob Agents Chemother. 1980 Feb;17(2):103-8. doi: 10.1128/AAC.17.2.103.
7
Linkage map of Escherichia coli K-12, edition 7.
Microbiol Rev. 1983 Jun;47(2):180-230. doi: 10.1128/mr.47.2.180-230.1983.
8
Selection and characterization of beta-lactam-resistant Escherichia coli K-12 mutants.
Antimicrob Agents Chemother. 1983 Apr;23(4):622-5. doi: 10.1128/AAC.23.4.622.
10
New nalidixic acid resistance mutations related to deoxyribonucleic acid gyrase activity.
J Bacteriol. 1981 Nov;148(2):450-8. doi: 10.1128/jb.148.2.450-458.1981.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验