Suppr超能文献

成功开展以患者为中心的罕见病研究之路:基于网络的免疫缺陷和糖基化先天性异常问卷(ImmunoCDGQ)案例研究。

The road to successful people-centric research in rare diseases: the web-based case study of the Immunology and Congenital Disorders of Glycosylation questionnaire (ImmunoCDGQ).

机构信息

CDG & Allies-Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, 2819-516, Caparica, Portugal.

UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, 2819-516, Caparica, Portugal.

出版信息

Orphanet J Rare Dis. 2022 Mar 24;17(1):134. doi: 10.1186/s13023-022-02286-w.

Abstract

BACKGROUND

Congenital Disorders of Glycosylation (CDG) are a complex family of rare metabolic diseases. Robust clinical data collection faces many hurdles, preventing full CDG biological and clinical comprehension. Web-based platforms offer privileged opportunities for biomedical data gathering, and participant recruitment, particularly in rare diseases. The immunology and CDG electronic (e-) questionnaire (ImmunoCDGQ) explores this paradigm, proposing a people-centric framework to advance health research and participant empowerment.

OBJECTIVE

The objectives of this study were to: (1) Describe and characterize the ImmunoCDGQ development, engagement, recruitment, participation, and result dissemination strategies; (2) To critically compare this framework with published literature and making recommendations.

METHODS

An international, multistakeholder people-centric approach was initiated to develop and distribute the ImmunoCDGQ, a multi-lingual e-questionnaire able to collect immune-related data directly from patients and family caregivers. An adapted version was produced and distributed among the general "healthy" population (ImmunoHealthyQ), serving as the control group. Literature screening was performed to identify and analyze comparable studies.

RESULTS

The ImmunoCDGQ attained high participation and inclusion rates (94.6%, 209 out of 221). Comparatively to the control, CDG participants also showed higher and more variable questionnaire completion times as well as increased English version representativeness. Additionally, 20% of the CDG group (42 out of 209) chose not to complete the entire questionnaire in one go. Conditional logic structuring guided participant data provision and accurate data analysis assignment. Multi-channel recruitment created sustained engagement with Facebook emerging as the most followed social media outlet. Still, most included ImmunoCDGQ questionnaires (50.7%, 106 out of 209) were submitted within the first month of the project's launch. Literature search and analysis showed that most e-questionnaire-based studies in rare diseases are author-built (56.8%, 25 out of 44), simultaneously addressing medical and health-related quality of life (HRQoL) and/or information needs (79.5%, 35 out of 44). Also, over 68% of the studies adopt multi-platform recruitment (30 out of 44) actively supported by patient organizations (52.3%, 23 out of 44).

CONCLUSIONS

The ImmunoCDGQ, its methodology and the CDG Community served as models for health research, hence paving a successful and reproducible road to people-centricity in biomedical research.

摘要

背景

先天性糖基化障碍(CDG)是一组复杂的罕见代谢疾病。在充分了解 CDG 的生物学和临床特征方面,临床数据的采集面临诸多挑战。基于网络的平台为生物医学数据的采集和参与者招募提供了宝贵的机会,尤其在罕见病领域。免疫和 CDG 电子(e-)问卷(ImmunoCDGQ)探索了这一模式,提出了以患者为中心的框架,以推进健康研究和增强参与者的能力。

目的

本研究的目的是:(1)描述和描述 ImmunoCDGQ 的开发、参与、招募、参与和结果传播策略;(2)与已发表文献进行批判性比较并提出建议。

方法

采用国际多利益相关方以患者为中心的方法开发和分发 ImmunoCDGQ,这是一种能够直接从患者和家属那里收集免疫相关数据的多语言电子问卷。制作并分发了一个适应版本给一般“健康”人群(ImmunoHealthyQ),作为对照组。进行了文献筛选,以确定和分析可比的研究。

结果

ImmunoCDGQ 的参与率和纳入率很高(94.6%,209/221)。与对照组相比,CDG 参与者的问卷完成时间也更长、更可变,并且英语版本的代表性更高。此外,20%的 CDG 组(42/209)选择一次不完成整个问卷。条件逻辑结构指导患者提供数据,并准确分配数据分析任务。多渠道招募持续参与,Facebook 成为最受欢迎的社交媒体渠道。尽管如此,大多数包含的 ImmunoCDGQ 问卷(50.7%,106/209)都是在项目启动后的第一个月内提交的。文献搜索和分析表明,大多数基于电子问卷的罕见病研究都是作者自建的(56.8%,25/44),同时解决医疗和健康相关生活质量(HRQoL)和/或信息需求(79.5%,35/44)。此外,超过 68%的研究采用多平台招募(30/44),并得到患者组织的积极支持(52.3%,23/44)。

结论

ImmunoCDGQ、其方法和 CDG 社区为健康研究提供了模型,因此为生物医学研究中的以患者为中心铺平了成功和可复制的道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ba2/8944152/8de25e86325d/13023_2022_2286_Fig1_HTML.jpg

相似文献

2
Stakeholders' views on drug development: the congenital disorders of glycosylation community perspective.
Orphanet J Rare Dis. 2022 Jul 30;17(1):303. doi: 10.1186/s13023-022-02460-0.
5
A Participatory Framework for Plain Language Clinical Management Guideline Development.
Int J Environ Res Public Health. 2022 Oct 19;19(20):13506. doi: 10.3390/ijerph192013506.

引用本文的文献

本文引用的文献

1
European Reference Networks: challenges and opportunities.
J Community Genet. 2021 Apr;12(2):217-229. doi: 10.1007/s12687-021-00521-8. Epub 2021 Mar 17.
2
Experiences of parents with children with congenital disorders of glycosylation: What can we learn from them?
Disabil Health J. 2021 Jul;14(3):101065. doi: 10.1016/j.dhjo.2021.101065. Epub 2021 Jan 23.
3
The European Reference Network for Rare Neurological Diseases.
Front Neurol. 2021 Jan 14;11:616569. doi: 10.3389/fneur.2020.616569. eCollection 2020.
4
Online health survey research during COVID-19.
Lancet Digit Health. 2021 Feb;3(2):e76-e77. doi: 10.1016/S2589-7500(21)00002-9.
5
Digital health during COVID-19: lessons from operationalising new models of care in ophthalmology.
Lancet Digit Health. 2021 Feb;3(2):e124-e134. doi: 10.1016/S2589-7500(20)30287-9.
6
Congenital disorders of glycosylation: Still "hot" in 2020.
Biochim Biophys Acta Gen Subj. 2021 Jan;1865(1):129751. doi: 10.1016/j.bbagen.2020.129751. Epub 2020 Sep 28.
8
Understanding genetic learning needs of people affected by rare disease.
J Genet Couns. 2020 Dec;29(6):1050-1058. doi: 10.1002/jgc4.1233. Epub 2020 Mar 3.
9
The challenges of living with and managing epidermolysis bullosa: insights from patients and caregivers.
Orphanet J Rare Dis. 2020 Jan 3;15(1):1. doi: 10.1186/s13023-019-1279-y.
10
Perspectives of Patients With Dermatofibrosarcoma Protuberans on Diagnostic Delays, Surgical Outcomes, and Nonprotuberance.
JAMA Netw Open. 2019 Aug 2;2(8):e1910413. doi: 10.1001/jamanetworkopen.2019.10413.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验